当前位置:   article > 正文

【LLM】-10-部署llama-3-chinese-8b-instruct-v3 大模型_llama-3-chinese-8b-instruct-v3本地部署

llama-3-chinese-8b-instruct-v3本地部署

目录

1、模型下载

2、下载项目代码

3、启动模型

4、模型调用

4.1、completion接口

4.2、聊天(chat completion)

4.3、多轮对话

4.4、文本嵌入向量

5、Java代码实现调用


由于在【LLM】-09-搭建问答系统-对输入Prompt检查-CSDN博客 关于提示词注入问题上,

使用Langchain 配合 chatglm3-6b 无法从根本上防止注入攻击问题。

并且在Langchian中无法部署llama3模型(切换模型错误,原因暂未解决)

所以直接部署llama3中文大模型。

选择 llama-3-chinese-8b-instruct-v3 模型,需要16G显存

 部署使用参考文档 https://github.com/ymcui/Chinese-LLaMA-Alpaca

如何需要更大、更精确的模型 参考 魔搭社区

或者使用推荐/其他模型下载

1、模型下载

基于魔搭社区 下载

git需要2.40 以上版本,git在低版本下载限制单个文件4G大小,但实际模式存在大于4G情况

git lfs install
git clone https://www.modelscope.cn/ChineseAlpacaGroup/llama-3-chinese-8b-instruct-v3.git

2、下载项目代码

git clone https://github.com/ymcui/Chinese-LLaMA-Alpaca-3.git

建议使用conda 环境 

  1. # 创建chatchat 环境
  2. conda create -n llama3 python=3.11.8
  3. # 激活环境
  4. conda activate llama3

安装依赖 

  1. cd Chinese-LLaMA-Alpaca-3
  2. pip install -r requirements.txt

3、启动模型

启动命令

  1. python scripts/oai_api_demo/openai_api_server.py \
  2. --base_model /path/to/base_model \
  3. --lora_model /path/to/lora_model \
  4. --gpus 0,1 \
  5. --use_flash_attention_2

参数说明:

  • --base_model {base_model}:存放HF格式的Llama-3-Chinese-Instruct模型权重和配置文件的目录,可以是合并后的模型(此时无需提供--lora_model),也可以是转后HF格式后的原版Llama-3-Instruct模型(需要提供--lora_model

  • --lora_model {lora_model}:Llama-3-Chinese-Instruct的LoRA解压后文件所在目录,也可使用

    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/968390
推荐阅读
相关标签