当前位置:   article > 正文

Python基于PyTorch实现循环神经网络分类模型(LSTM分类算法)项目实战_lstm 分类 pytorch

lstm 分类 pytorch

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍作停顿,不要读成“长短”记忆网络,因为那样的话,就不知道记忆到底是长还是短。本质上,它还是短记忆网络,只是用某种方法把“短记忆”尽可能延长了一些。

本项目通过基于PyTorch实现循环神经网络分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

 

关键代码如下:

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析 

 

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

 

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建循环神经网络分类模型

主要使用LSTM层网络,用于目标分类。

6.1 模型构建

7. 模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率(召回率)、F1分值等等。

 

通过上表可以看到,模型的准确率为93%,F1分值为0.9271,模型效果良好。

7.2 分类报告

 

从上图可以看出,分类为0的F1分值为0.93;分类为1的F1分值为0.93。

7.3 混淆矩阵

 

从上图可以看出,实际为0预测不为0的 有8个样本;实际为1 预测不为1的, 有20个样本。

8.结论与展望

综上所述,本项目基于PyTorch实现循环神经网络分类模型并对模型进行了评估,最终证明了我们提出的模型效果良好。

  1. # 本次机器学习项目实战所需的资料,项目资源如下:
  2. # 项目说明:
  3. # 链接:https://pan.baidu.com/s/1LufUBs4qm5_Jle_S4OdNoA
  4. # 提取码:6z55

 更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/488329
推荐阅读
相关标签
  

闽ICP备14008679号