当前位置:   article > 正文

[NLP]使用LDA模型计算文档相似度_lda主题相似度计算

lda主题相似度计算

定义

wiki关于lda的定义:

隐含狄利克雷分布简称LDA(Latent Dirichlet allocation),是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出。同时它是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可。此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它。
LDA首先由Blei, David M.、吴恩达和Jordan, Michael I于2003年提出,目前在文本挖掘领域包括文本主题识别、文本分类以及文本相似度计算方面都有应用。

lda也是一种典型的词袋模型,它假设每一篇文档都是一组词的集合,并且词与词之间没有顺序和先后关系。一篇文章可以包含多个主题,文档中的每一个词都是由其中的一个主题生成。

实现

import codecs
from gensim.models import LdaModel
from gensim.corpora import Dictionary
from gensim import corpora, models
import numpy as np
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/195634?site
推荐阅读
相关标签
  

闽ICP备14008679号