当前位置:   article > 正文

Logistic回归(逻辑回归)及python代码实现_python逻辑回归代码

python逻辑回归代码

Logistic(Logistic Regression,LR)回归

原理讲解

在模式识别问题中,所关心的量是分类,比如是否会患有某种疾病,这时就不能用简单的线性回归来完成这个问题了。为了解决次问题,我们引入了非线性激活函数 g : R D → ( 0 , 1 ) g:{\mathbb R}^D\to(0,1) g:RD(0,1)来预测类别标签的后验概率 p ( y = 1 ∣ x ) p(y=1|\bf x) p(y=1∣x),其中 y ∈ { 0 , 1 } y\in\{0,1\} y{0,1},函数 g g g的作用是把线性函数的值域从实数区间挤压到0和1之间
Logistic回归中,激活函数的表达式为: σ ( x ) = 1 1 + e − x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
标签 y = 1 y=1 y=1的后验概率为 p ( y = 1 ∣ x ) = σ ( w T x ) = 1 1 + e − w T x ⋯ ( 1 ) p(y=1|{\bf x})=\sigma({\bf w}^{\rm T}{\bf {x}})=\frac{1}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}}\cdots(1) p(y=1∣x)=σ(wTx)=1+ewTx1(1)
这里, x = [ x 1 , ⋯   , x D , 1 ] T {\bf x}=[x_1,\cdots,x_D,1]^{\rm T} x=[x1,,xD,1]T w = [ w 1 , ⋯   , w D , b ] T {\bf w}=[w_1,\cdots,w_D,b]^{\rm T} w=[w1,,wD,b]T分别为D+1维的增广特征向量与增广权重向量
标签 y = 0 y=0 y=0的后验概率为 p ( y = 0 ∣ x ) = 1 − p ( y = 1 ∣ x ) = e − w T x 1 + e − w T x p(y=0|{\bf x})=1-p(y=1|{\bf x})=\frac{e^{-{\bf w}^{\rm T}{\bf {x}}}}{1+e^{-{\bf w}^{\rm T}{\bf {x}}}} p(y=0∣x)=1p(y=1∣x)=1+ewTxewTx
对式(1)进行变换后得到 w T x = log ⁡ p ( y = 1 ∣ x ) 1 − p ( y = 1 ∣ x ) = log ⁡ p ( y = 1 ∣ x ) p ( y = 0 ∣ x ) {\bf w}^{\rm T}{\bf {x}}=\log \frac{p(y=1|{\bf x})}{1-p(y=1|{\bf x})}=\log \frac{p(y=1|{\bf x})}{p(y=0|{\bf x})} wTx=log1p(y=1∣x)p(y=1∣x)=logp(y=0∣x)p(y=1∣x)上式左边为线性函数,右边为正反后验概率比值(几率)取对数,因此Logistic回归也称为对数几率回归

参数计算

LR采用交叉熵作为损失函数,使用梯度下降进行优化
假设存在N个训练样本 { ( x ( n ) , y ( n ) ) } n = 1 N \{({\bf x}^{(n)},y^{(n)})\}_{n=1}^N {(x(n),y(n))}n=1N,采用LR回归模型对每个样本 x ( n ) {\bf x}^{(n)} x(n)进行预测,输出其标签为1的后验概率,记为 y ^ ( n ) {\hat y}^{(n)} y^(n),即 y ^ ( n ) = σ ( w T x ( n ) ) , 1 ≤ n ≤ N {\hat y}^{(n)}=\sigma({\bf w}^{\rm T}{\bf {x}}^{(n)}),1\leq n\leq N y^(n)=σ(wTx(n)),1nN
由于 y ( n ) ∈ { 0 , 1 } y^{(n)}\in\{0,1\} y(n){0,1},样本 ( x ( n ) , y ( n ) ) ({\bf x}^{(n)},y^{(n)}) (x(n),y(n))的真实条件概率可以表示为 p r ( y ( n ) = 1 ∣ x ( n ) ) = y ( n ) , p_r(y^{(n)}=1|{\bf x}^{(n)})=y^{(n)}, pr(y(n)=1∣x(n))=y(n), p r ( y ( n ) = 0 ∣ x ( n ) ) = 1 − y ( n ) p_r(y^{(n)}=0|{\bf x}^{(n)})=1-y^{(n)} pr(y(n)=0∣x(n))=1y(n)
采用交叉熵损失函数,其风险函数为 R ( w ) = − 1 N ∑ n = 1 N ( p r ( y ( n ) = 1 ∣ x ( n ) ) log ⁡ y ^ ( n ) + p r ( y ( n ) = 0 ∣ x ( n ) ) log ⁡ ( 1 − y ^ ( n ) ) ) = − 1 N ∑ n = 1 N ( y ( n ) log ⁡ y ^ ( n ) + ( 1 − y ( n ) ) log ⁡ ( 1 − y ^ ( n ) ) ) {\mathcal R}({\bf w})=-\frac{1}{N}\sum_{n=1}^N \left(p_r(y^{(n)}=1|{\bf x}^{(n)})\log {\hat y}^{(n)}+p_r(y^{(n)}=0|{\bf x}^{(n)})\log (1-{\hat y}^{(n)})\right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\log {\hat y}^{(n)}+(1-y^{(n)})\log (1-{\hat y}^{(n)}) \right) R(w)=N1n=1N(pr(y(n)=1∣x(n))logy^(n)+pr(y(n)=0∣x(n))log(1y^(n)))=N1n=1N(y(n)logy^(n)+(1y(n))log(1y^(n)))
风险函数关于参数 w \bf w w的偏导数为 ∂ R ( w ) ∂ w = − 1 N ∑ n = 1 N ( y ( n ) y ^ ( n ) ( 1 − y ^ ( n ) ) y ^ ( n ) x ( n ) − ( 1 − y ( n ) ) y ^ ( n ) ( 1 − y ^ ( n ) ) 1 − y ^ ( n ) x ( n ) ) = − 1 N ∑ n = 1 N ( y ( n ) ( 1 − y ^ ( n ) ) x ( n ) − ( 1 − y ( n ) ) y ^ ( n ) x ( n ) ) = − 1 N ∑ n = 1 N x ( n ) ( y ( n ) − y ^ ( n ) ) \frac{\partial {\mathcal R}({\bf w})}{\partial {\bf w}}=-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{{\hat y}^{(n)}}{\bf x}^{(n)}-(1-y^{(n)})\frac{{\hat y}^{(n)}(1-{\hat y}^{(n)})}{1-{\hat y}^{(n)}}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N\left(y^{(n)}(1-{\hat y}^{(n)}){\bf x}^{(n)}-(1-y^{(n)}){\hat y}^{(n)}{\bf x}^{(n)} \right) \\ =-\frac{1}{N}\sum_{n=1}^N{\bf x}^{(n)}(y^{(n)}-{\hat y}^{(n)}) wR(w)=N1n=1N(y(n)y^(n)y^(n)(1y^(n))x(n)(1y(n))1y^(n)y^(n)(1y^(n))x(n))=N1n=1N(y(n)(1y^(n))x(n)(1y(n))y^(n)x(n))=N1n=1Nx(n)(y(n)y^(n))
由此我们可以采用梯度下降法更新参数最终得到合适的参数 w \bf w w

python代码实现

生成数据集

我们通过下面的代码自行生成一个样本数量为100的数据集

import numpy as np
import matplotlib.pyplot as plt

# 设置随机种子,以便结果可复现
np.random.seed(42)

# 生成随机数据
# 两个特征的均值和方差
mean_1 = [2, 2]
cov_1 = [[2, 0], [0, 2]]
mean_2 = [-2, -2]
cov_2 = [[1, 0], [0, 1]]

# 生成类别1的样本
X1 = np.random.multivariate_normal(mean_1, cov_1, 50)
y1 = np.zeros(50)

# 生成类别2的样本
X2 = np.random.multivariate_normal(mean_2, cov_2, 50)
y2 = np.ones(50)

# 合并样本和标签
X = np.concatenate((X1, X2), axis=0)
y = np.concatenate((y1, y2))

# 绘制散点图
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, edgecolor='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Logistic Regression Dataset')
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

运行结果如下图所示
在这里插入图片描述
图中,类别1为右上部分,标签为0;类别2为左下部分,标签为1

不使用其他库实现

定义激活函数(标准Logistic函数即Sigmoid函数)

def sigmoid(x):
    if x>0:
        return 1.0/(1.0+np.exp(-x))
    else:
        return np.exp(x)/(1.0+np.exp(x))
  • 1
  • 2
  • 3
  • 4
  • 5

定义LogisticRegression类

class LogisticRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None
        self.bias = None

    def fit(self, X, y):
        num_samples, num_features = X.shape

        # 初始化权重和偏置
        self.weights = np.zeros(num_features)
        self.bias = 0

        # 梯度下降
        for _ in range(self.num_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_pred = sigmoid(linear_model)

            dw = (1 / num_samples) * np.dot(X.T, (y_pred - y))
            db = (1 / num_samples) * np.sum(y_pred - y)

            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db

    def predict_prob(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_pred = sigmoid(linear_model)
        return y_pred

    def predict(self, X, threshold=0.5):
        y_pred_prob = self.predict_prob(X)
        y_pred = np.zeros_like(y_pred_prob)
        y_pred[y_pred_prob >= threshold] = 1
        return y_pred
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

调用LogisticRegression类解决分类问题

# 创建 Logistic 回归模型
    logreg = LogisticRegression()
    
    # 训练模型
    logreg.fit(X, y)
    
    # 预测样本
    X_new = np.array([[2.5, 2.5], [-6.0, -4.0]])
    y_pred_prob = logreg.predict_prob(X_new)
    y_pred = logreg.predict(X_new)
    
    print("Predicted Probabilities:", y_pred_prob)
    print("Predicted Labels:", y_pred)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

输出结果为
在这里插入图片描述
预测样本1(2.5,2.5)位于右上部分属于类别1,真实标签为0;预测样本2(-6,-4)位于左下部分属于类别2,真实标签为1,对比输出结果可知,该分类器已训练得合适参数,可完成分类任务

使用sklearn库

我们可以通过使用sklearn库来简洁地实现LR

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

#所使用数据集同上X,y

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建Logistic回归模型
logreg = LogisticRegression()

# 训练模型
logreg.fit(X_train, y_train)

# 预测测试集
y_pred = logreg.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

最终测试集上计算得到的准确率accuracy为1,可见该分类器的效果非常好

拓展

logistic回归可以用于分类非线性可分的数据。尽管logistic回归本身是一个线性分类器,但可以通过引入多项式特征、交互特征、组合特征等方法来扩展其能力,从而处理非线性的分类问题。
具体来说,可以通过特征工程的方式将原始特征进行变换,以引入非线性关系。例如,可以通过添加多项式特征,将原始特征的高阶项加入到模型中,例如原始特征的平方项、立方项等。还可以引入交互特征,将不同特征之间的乘积或分割点(例如,做差或做除)作为新的特征。
通过引入这些非线性特征,logistic回归可以更好地捕捉到数据中的非线性关系,从而能够更好地分类非线性可分的数据。需要注意的是,在引入非线性特征时,可能需要进行正则化或其他模型调优技巧,以避免过拟合问题。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/337707
推荐阅读
相关标签
  

闽ICP备14008679号