当前位置:   article > 正文

深度学习-第J9周:Inception v3算法实战与解析

inception v3

一、理论基础

Inception v3由谷歌研究员Christian Szegedy等人在2015年的论文《Rethinking the Inception Architecture for Computer Vision》中提出。Inception v3是Inception网络系列的第三个版本,它在ImageNet图像识别竞赛中取得了优异成绩,尤其是在大规模图像识别任务中表现出色。

 对比Inception v1

 先看Inception v3做了以下改动:

① 

 ②

完整的框架为

二、改动的实现

我们把① 称为InceptionA

  1. class InceptionA(nn.Module):
  2. def __init__(self, in_channels, pool_features):
  3. super(InceptionA, self).__init__()
  4. self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) # 1
  5. self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
  6. self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
  7. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  8. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  9. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
  10. self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)
  11. def forward(self, x):
  12. branch1x1 = self.branch1x1(x)
  13. branch5x5 = self.branch5x5_1(x)
  14. branch5x5 = self.branch5x5_2(branch5x5)
  15. branch3x3dbl = self.branch3x3dbl_1(x)
  16. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  17. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  18. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  19. branch_pool = self.branch_pool(branch_pool)
  20. outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
  21. return torch.cat(outputs, 1)

结构以下称为InceptionB

  1. class InceptionB(nn.Module):
  2. def __init__(self, in_channels):
  3. super(InceptionB, self).__init__()
  4. self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)
  5. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  6. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  7. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)
  8. def forward(self, x):
  9. branch3x3 = self.branch3x3(x)
  10. branch3x3dbl = self.branch3x3dbl_1(x)
  11. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  12. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  13. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  14. outputs = [branch3x3, branch3x3dbl, branch_pool]
  15. return torch.cat(outputs, 1)

②称为InceptionC

  1. class InceptionC(nn.Module):
  2. def __init__(self, in_channels, channels_7x7):
  3. super(InceptionC, self).__init__()
  4. self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)
  5. c7 = channels_7x7
  6. self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  7. self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  8. self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))
  9. self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  10. self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  11. self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  12. self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  13. self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))
  14. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  15. def forward(self, x):
  16. branch1x1 = self.branch1x1(x)
  17. branch7x7 = self.branch7x7_1(x)
  18. branch7x7 = self.branch7x7_2(branch7x7)
  19. branch7x7 = self.branch7x7_3(branch7x7)
  20. branch7x7dbl = self.branch7x7dbl_1(x)
  21. branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
  22. branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
  23. branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
  24. branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
  25. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  26. branch_pool = self.branch_pool(branch_pool)
  27. outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
  28. return torch.cat(outputs, 1)

结构以下称为InceptionD

  1. class InceptionD(nn.Module):
  2. def __init__(self, in_channels):
  3. super(InceptionD, self).__init__()
  4. self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  5. self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)
  6. self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  7. self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
  8. self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
  9. self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)
  10. def forward(self, x):
  11. branch3x3 = self.branch3x3_1(x)
  12. branch3x3 = self.branch3x3_2(branch3x3)
  13. branch7x7x3 = self.branch7x7x3_1(x)
  14. branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
  15. branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
  16. branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
  17. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  18. outputs = [branch3x3, branch7x7x3, branch_pool]
  19. return torch.cat(outputs, 1)

③称为InceptionE

  1. class InceptionE(nn.Module):
  2. def __init__(self, in_channels):
  3. super(InceptionE, self).__init__()
  4. self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)
  5. self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
  6. self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  7. self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  8. self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
  9. self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
  10. self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  11. self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  12. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  13. def forward(self, x):
  14. branch1x1 = self.branch1x1(x)
  15. branch3x3 = self.branch3x3_1(x)
  16. branch3x3 = [
  17. self.branch3x3_2a(branch3x3),
  18. self.branch3x3_2b(branch3x3),
  19. ]
  20. branch3x3 = torch.cat(branch3x3, 1)
  21. branch3x3dbl = self.branch3x3dbl_1(x)
  22. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  23. branch3x3dbl = [
  24. self.branch3x3dbl_3a(branch3x3dbl),
  25. self.branch3x3dbl_3b(branch3x3dbl),
  26. ]
  27. branch3x3dbl = torch.cat(branch3x3dbl, 1)
  28. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  29. branch_pool = self.branch_pool(branch_pool)
  30. outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
  31. return torch.cat(outputs, 1)

三、完整的Inception v3

  1. class BasicConv2d(nn.Module):
  2. def __init__(self, in_channels, out_channels, **kwargs):
  3. super(BasicConv2d, self).__init__()
  4. self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
  5. self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
  6. def forward(self, x):
  7. x = self.conv(x)
  8. x = self.bn(x)
  9. return F.relu(x, inplace=True)
  10. class GoogleNet_v3_Model(nn.Module):
  11. def __init__(self, num_classes=1000, init_weights=True):
  12. super(GoogleNet_v3_Model, self).__init__()
  13. self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
  14. self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
  15. self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
  16. self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
  17. self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
  18. self.Mixed_5b = InceptionA(192, pool_features=32)
  19. self.Mixed_5c = InceptionA(256, pool_features=64)
  20. self.Mixed_5d = InceptionA(288, pool_features=64)
  21. self.Mixed_6a = InceptionB(288)
  22. self.Mixed_6b = InceptionC(768, channels_7x7=128)
  23. self.Mixed_6c = InceptionC(768, channels_7x7=160)
  24. self.Mixed_6d = InceptionC(768, channels_7x7=160)
  25. self.Mixed_6e = InceptionC(768, channels_7x7=192)
  26. self.Mixed_7a = InceptionD(768)
  27. self.Mixed_7b = InceptionE(1280)
  28. self.Mixed_7c = InceptionE(2048)
  29. self.fc = nn.Sequential(nn.Linear(2048, num_classes),
  30. nn.Softmax(dim=1))#nn.Linear(1024, num_classes)
  31. if init_weights:
  32. self._initialize_weights()
  33. def _initialize_weights(self):
  34. for m in self.modules():
  35. if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
  36. import scipy.stats as stats
  37. X = stats.truncnorm(-2, 2, scale=0.01)
  38. values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
  39. values = values.view(m.weight.size())
  40. with torch.no_grad():
  41. m.weight.copy_(values)
  42. elif isinstance(m, nn.BatchNorm2d):
  43. nn.init.constant_(m.weight, 1)
  44. nn.init.constant_(m.bias, 0)
  45. def forward(self, x):
  46. # 299 x 299 x 3
  47. x = self.Conv2d_1a_3x3(x)
  48. # 149 x 149 x 32
  49. x = self.Conv2d_2a_3x3(x)
  50. # 147 x 147 x 32
  51. x = self.Conv2d_2b_3x3(x)
  52. # 147 x 147 x 64
  53. x = F.max_pool2d(x, kernel_size=3, stride=2)
  54. # 73 x 73 x 64
  55. x = self.Conv2d_3b_1x1(x)
  56. # 73 x 73 x 80
  57. x = self.Conv2d_4a_3x3(x)
  58. # 71 x 71 x 192
  59. x = F.max_pool2d(x, kernel_size=3, stride=2)
  60. # 35 x 35 x 192
  61. x = self.Mixed_5b(x)
  62. # 35 x 35 x 256
  63. x = self.Mixed_5c(x)
  64. # 35 x 35 x 288
  65. x = self.Mixed_5d(x)
  66. # 35 x 35 x 288
  67. x = self.Mixed_6a(x)
  68. # 17 x 17 x 768
  69. x = self.Mixed_6b(x)
  70. # 17 x 17 x 768
  71. x = self.Mixed_6c(x)
  72. # 17 x 17 x 768
  73. x = self.Mixed_6d(x)
  74. # 17 x 17 x 768
  75. x = self.Mixed_6e(x)
  76. # 17 x 17 x 768
  77. x = self.Mixed_7a(x)
  78. # 8 x 8 x 1280
  79. x = self.Mixed_7b(x)
  80. # 8 x 8 x 2048
  81. x = self.Mixed_7c(x)
  82. # 8 x 8 x 2048
  83. x = F.avg_pool2d(x, kernel_size=8)
  84. # 1 x 1 x 2048
  85. x = F.dropout(x, training=self.training)
  86. # 1 x 1 x 2048
  87. x = x.view(x.size(0), -1)
  88. # 2048
  89. x = self.fc(x)
  90. # 1000 (num_classes)
  91. return x
  92. class InceptionA(nn.Module):
  93. def __init__(self, in_channels, pool_features):
  94. super(InceptionA, self).__init__()
  95. self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1) # 1
  96. self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
  97. self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
  98. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  99. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  100. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
  101. self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)
  102. def forward(self, x):
  103. branch1x1 = self.branch1x1(x)
  104. branch5x5 = self.branch5x5_1(x)
  105. branch5x5 = self.branch5x5_2(branch5x5)
  106. branch3x3dbl = self.branch3x3dbl_1(x)
  107. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  108. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  109. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  110. branch_pool = self.branch_pool(branch_pool)
  111. outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
  112. return torch.cat(outputs, 1)
  113. class InceptionB(nn.Module):
  114. def __init__(self, in_channels):
  115. super(InceptionB, self).__init__()
  116. self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)
  117. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  118. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  119. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)
  120. def forward(self, x):
  121. branch3x3 = self.branch3x3(x)
  122. branch3x3dbl = self.branch3x3dbl_1(x)
  123. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  124. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  125. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  126. outputs = [branch3x3, branch3x3dbl, branch_pool]
  127. return torch.cat(outputs, 1)
  128. class InceptionC(nn.Module):
  129. def __init__(self, in_channels, channels_7x7):
  130. super(InceptionC, self).__init__()
  131. self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)
  132. c7 = channels_7x7
  133. self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  134. self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  135. self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))
  136. self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  137. self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  138. self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  139. self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  140. self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))
  141. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  142. def forward(self, x):
  143. branch1x1 = self.branch1x1(x)
  144. branch7x7 = self.branch7x7_1(x)
  145. branch7x7 = self.branch7x7_2(branch7x7)
  146. branch7x7 = self.branch7x7_3(branch7x7)
  147. branch7x7dbl = self.branch7x7dbl_1(x)
  148. branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
  149. branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
  150. branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
  151. branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
  152. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  153. branch_pool = self.branch_pool(branch_pool)
  154. outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
  155. return torch.cat(outputs, 1)
  156. class InceptionD(nn.Module):
  157. def __init__(self, in_channels):
  158. super(InceptionD, self).__init__()
  159. self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  160. self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)
  161. self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  162. self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
  163. self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
  164. self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)
  165. def forward(self, x):
  166. branch3x3 = self.branch3x3_1(x)
  167. branch3x3 = self.branch3x3_2(branch3x3)
  168. branch7x7x3 = self.branch7x7x3_1(x)
  169. branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
  170. branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
  171. branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
  172. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  173. outputs = [branch3x3, branch7x7x3, branch_pool]
  174. return torch.cat(outputs, 1)
  175. class InceptionE(nn.Module):
  176. def __init__(self, in_channels):
  177. super(InceptionE, self).__init__()
  178. self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)
  179. self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
  180. self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  181. self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  182. self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
  183. self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
  184. self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  185. self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  186. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  187. def forward(self, x):
  188. branch1x1 = self.branch1x1(x)
  189. branch3x3 = self.branch3x3_1(x)
  190. branch3x3 = [
  191. self.branch3x3_2a(branch3x3),
  192. self.branch3x3_2b(branch3x3),
  193. ]
  194. branch3x3 = torch.cat(branch3x3, 1)
  195. branch3x3dbl = self.branch3x3dbl_1(x)
  196. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  197. branch3x3dbl = [
  198. self.branch3x3dbl_3a(branch3x3dbl),
  199. self.branch3x3dbl_3b(branch3x3dbl),
  200. ]
  201. branch3x3dbl = torch.cat(branch3x3dbl, 1)
  202. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  203. branch_pool = self.branch_pool(branch_pool)
  204. outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
  205. return torch.cat(outputs, 1)

四、运行代码

运行代码参考

深度学习-第J8周:Inception v1算法实战与解析_quant_day的博客-CSDN博客

  1. if __name__=='__main__':
  2. early_stop=10
  3. epochs = 100
  4. model = GoogleNet_v3_Model(num_classes=N_classes, init_weights=True)
  5. loss_func = nn.CrossEntropyLoss()
  6. optimizer = torch.optim.Adam(model.parameters(),lr=0.0001)
  7. model, record = train_and_test(model, loss_func, optimizer, epochs, early_stop)
  8. torch.save(model.state_dict(), './Best_GoogleNet_V3.pth')
  9. record = np.array(record)
  10. plt.plot(record[:, 0:2])
  11. plt.legend(['Train Loss', 'Valid Loss'])
  12. plt.xlabel('Epoch Number')
  13. plt.ylabel('Loss')
  14. plt.ylim(0, 1.5)
  15. plt.savefig('Loss_V3_J3_1.png')
  16. plt.show()
  17. plt.plot(record[:, 2:4])
  18. plt.legend(['Train Accuracy', 'Valid Accuracy'])
  19. plt.xlabel('Epoch Number')
  20. plt.ylabel('Accuracy')
  21. plt.ylim(0, 1)
  22. plt.savefig('Accuracy_V3_J3_1.png')
  23. plt.show()

运行结果如下:

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/774011
推荐阅读
相关标签
  

闽ICP备14008679号