当前位置:   article > 正文

python提取图片中的文字_python提取图片文字

python提取图片文字

python提取图片中的文字

OCR,全称Optical character recognition,中文译名叫做光学文字识别。它把图像中的字符,转换为机器编码的文本的一种方法。OCR技术在印刷行业应用得非常多,也广泛用于识别图片中的文字数据 – 比如护照,支票,银行声明,收据,统计表单,邮件等。

pytesseract,即Python-tesseract,是Google Tesseract ORC引擎的封装。首次于2014年提出,支持的图片格式有’JPEG’, ‘PNG’, ‘PBM’, ‘PGM’, ‘PPM’, ‘TIFF’, ‘BMP’, ‘GIF’,只需要简短的代码就能够提取图片中的字符合文字了,极大方便文字工作。

准备工作

1,安装pillow或者PIL,主要用来打开本地图片

pip install PIL
pip install pillow
  • 1
  • 2

2,安装pytesseract,主要用来将图片里面文字转化字符串或者pdf

pip install pytesseract
  • 1

3,安装 Tesseract-OCR应用程序
进入 https://pan.baidu.com/s/1qXumxdltxOnb0geaE_1U-Q下载安装

4,修改 pytesseract 源码中的路径
进入D:\Anaconda3\Lib\site-packages\pytesseract,用Notepad++打开pytesseract.py,将源码第26行的路径修改成安装Tesseract-OCR应用程序路径。

源码

tesseract_cmd = 'tesseract.exe'
  • 1

修改成

tesseract_cmd = r'D:\Program Files\Tesseract-OCR\tesseract.exe'
  • 1

5,安装中文字库
进入https://pan.baidu.com/s/1GfspC5uef73B2Oa8YudBgQ,下载中文库复制到 Tesseract-OCR 安装目录下的 tessdata 文件夹中

赋值中文字库

原图片

原图片

完整代码

from PIL import Image
import pytesseract

image = Image.open("粉丝.jpg") #打开图片
#print(image.size) #测试图片像素尺寸
text = pytesseract.image_to_string(image, lang='chi_sim') #图片转字符串
text = text.replace("“ ","").replace("。","") #去掉杂质,提纯
print(text) #测试结果
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

结果预览

关 注 我 的 人

共 634 位
排 行 榜 用 户 分 析   
1 上 海 13321.0%   
2 邵 阳 6410.1%8
3 北 京 345.4%
4  广 州 193.0%
5 深 圳 182.8%
6 武 汉 162.5%
7 阜 阳 132.1%
8 长 沙 121.9%
9 成 都 11.7%
10 南 京 11.7%
人 重 庆 101.6%
12 苏 州 91.4%
13 杭 州 81.3%
14 西 安 60.9%
15 滩 坊 60.9%
16 美 国 50.8%
17 合 肥 50.8%
18 宁 波 50.8%
19 徐 州 50.8%
20 厦 门 40.6%
21 十 堰 40.6%
22 绍 兴 40.6%
23 哈 尔 滨 40.6%
24 石 家 庄 40.6%
25 沈 阳 4 人 【
26 济 南 40.6%
27 江 门 30.5%
28 洛 阳 30.5%
29 焦 作 30.5%
30 安 阳 30.5%
31 郁 州 30.5%
32 东 菀 30.5%
33 尾 明 30.5%
34 中 山 30.5%
35 长 春 30.5%
36 济 宁 30.5%
37 株 洲 30.5%
38 呼 和 浩 特 30.5%
39 贵 阳 30.5%
40 铜 仁 30.5%
41 长 治 30.5%
42 泰 安 20.3%
43 怀 化 20.3%
44 崴 州 20.3%
45 濮 阳 20.3%
46 聊 城 20.3%
47 邢 台 20.3%
48 烟 台 20.3%
49 湖 南 省 20.3%
50 保 定 20.3%
51 岳 阳 20.3%
52 常 德 20.3%
53 永 州 20.3%
54 天 津 20.3%
55 广 东 省 20.3%
56 秦 皇 峤 20.3%
57 湛 江 20.3%
58 揭 阳 20.3%
59 南 宁 20.3%
60 贺 州 20.3%
61 兰 州 20.3%
62 巴 音 郭 楼 20.3%
63 加 拿 大 20.3%
64 忻 州 20.3%
65 无 锡 20.3%
66 温 州 20.3%
67 芳 湖 20.3%
68 临 汾 20.3%
69 安 庆 20.3%
70 满 州 20.3%
71 吕 梁 20.3%
72 吉 林 20.3%
73 运 城 20.3%
74 根 州 10.2%
75 广 元 10.2%
76 松 原 10.2%
77 攀 枝 花 10.2%
78 泸 州 10.2%
79 宥 宾 1 人 【
80 绵 阳 10.2%
81 铁 峙 10.2%
s 遮 押 晚 白 人 02x
83 蹇萱黎族自 10.2%
84 海 口 10.2%
85 贵 潜 10.2%
86 桂 林 10.2%
87 营 口 10.2%
88 白 城 10.2%
89 百 色 10.2%
90 甘 孜 10.2%
91 北 海 10.2%
92 柳 州 10.2%
93 韶 关 10.2%
94 鞍 山 10.2%
95 梅 州 10.2%
96 辽 阳 10.2%
97 汕 属 10.2%
98 肇 庆 10.2%
99 包 头 10.2%
100 未 知 地 域 10.2%
101 荷 兰 10.2%
102 日 本 10.2%
103 英 国 10.2%
104 晋 中 10.2%
105 澳 大 利 亚 10.2%
106 奥 地 利 10.2%
107 昌 吉 10.2%
108 克 拉 玛 依 10.2%
109 银 川 10.2%
10 黄 南 10.2%
111 平 凉 10.2%
112 武 威 10.2%
113 达 州 10.2%
14 榆 林 10.2%
115 延 安 10.2%
116 宝 鸡 10.2%
117 香 潜 10.2%
8 呼 伦 贝 尔 10.2%
119 黔 东 南 10.2%
120 大 连 10.2%
121 邋 义 10.2%
122 六 盘 水 10.2%
123 葫 芦 岛 10.2%
124 延 边 10.2%
125 眉 山 10.2%
126 德 州 10.2%
127 信 阳 10.2%
128 新 乡 10.2%
129 台 州 10.2%
130 开 封 10.2%
131 嘉 兴 10.2%
132 衢 州 10.2%
133 金 华 10.2%
134 日 照 10.2%
135 张 家 口 10.2%
136 溏 博 10.2%
137 _ 临 沂 10.2%
138 菏 泽 10.2%
139 淮 北 10.2%
140 许 昌 10.2%
141 铜 陵 10.2%
142 青 岛 10.2%
143 新 余 10.2%
144 景 德 镇 10.2%
145 衡 水 10.2%
146 南 昌 10.2%
147 宁 德 10.2%
148 莲 田 10.2%
149 三 明 10.2%
150 泉 州 10.2%
151 六 安 10.2%
152 福 州 10.2%
153 梦 州 10.2%
154 滕 州 10.2%
155 佛 山 10.2%
156 鸣 州 10.2%
157 珠 海 10.2%
158 沧 州 10.2%
159 江 苏 省 10.2%
160 云 浮 10.2%
161 晋 城 10.2%
162 娄 底 10.2%
163 扬 州 10.2%
164 常 州 10.2%
165 唐 山 10.2%
166 湘 潭 10.2%
167 汕 头 10.2%
168 衡 阳 10.2%
169 连 云 湛 10.2%
170 张 家 界 10.2%
171 大 同 10.2%
172 盐 城 10.2%
173 黄 冈 10.2%
174 襄 糜 10.2%
175 宣 昌 10.2%
176 太 原 10.2%
177 庾 坊 10.2%
178 湖 北 省 10.2%
179 周 口 10.2%

全 部 加 载 完 成
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185

结果还是不错的,90%都识别出来了,只是汉字之间都是空格隔开,可以考虑replace掉。

参考文献

1,https://github.com/madmaze/pytesseract
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/296079
推荐阅读
相关标签
  

闽ICP备14008679号