当前位置:   article > 正文

关系型数据库和Nosql非关系数据库的优缺点介绍,选择分析_solrcloud属于非关系型数据库吗

solrcloud属于非关系型数据库吗

读过这篇文章后,你会对关系数据库和非关系数据有个非常清晰的了解 

关系型数据库:Oracle,Microsoft SQL Server,MySQL,PostgreSQL,DB2,Microsoft Access, SQLite,Teradata,MariaDB(MySQL的一个分支),SAP;
非关系型数据库:MongoDB,Redis,Couchbase,HBase,neo4j,Amazon DynamoDB,Memcached,Microsoft Azure Cosmos DB,CouchDB,Elasticsearch,Splunk,Solr,MarkLogic,Sphinx,Cassandra,Datastax Enterprise,Accumulo,Hazelcast

注意:以下文章都是转载的,转载链接都在每个段落的下方

一、关系型数据库

  1. 当今十大主流的关系型数据库
  2. Oracle,Microsoft SQL Server,MySQL,PostgreSQL,DB2,Microsoft Access, SQLite,Teradata,MariaDB(MySQL的一个分支),SAP

1.什么是关系型数据库

关系型数据库:指采用了关系模型来组织数据的数据库。
关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。

2.关系型数据库的优点:


1.容易理解:二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解
2.使用方便:通用的SQL语言使得操作关系型数据库非常方便
3.易于维护:丰富的完整性(实体完整性、参照完整性和用户定义的完整性)大大减低了数据冗余和数据不一致的概率

3.关系型数据库存在的问题


1.网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统关系型数据库来说,硬盘I/O是一个很大的瓶颈
2.网站每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的
3.在基于web的结构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。当需要对数据库系统进行升级和扩展时,往往需要停机维护和数据迁移。
4.性能欠佳:在关系型数据库中,导致性能欠佳的最主要原因是多表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询。为了保证数据库的ACID特性,必须尽量按照其要求的范式进行设计,关系型数据库中的表都是存储一个格式化的数据结构。

数据库事务必须具备ACID特性,ACID分别是Atomic原子性Consistency一致性Isolation隔离性Durability持久性


二、非关系型数据库

MongoDB,Redis,Couchbase,HBase,neo4j,Amazon DynamoDB,Memcached,Microsoft Azure Cosmos DB,CouchDB,Elasticsearch,Splunk,Solr,MarkLogic,Sphinx,Cassandra,Datastax Enterprise,Accumulo,Hazelcast

1.什么是非关系型数据库

非关系型数据库:指非关系型的,分布式的,且一般不保证遵循ACID原则的数据存储系统。

2.非关系型数据库结构


非关系型数据库以键值对存储,且结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,不局限于固定的结构,可以减少一些时间和空间的开销。

3.优点


1.用户可以根据需要去添加自己需要的字段,为了获取用户的不同信息,不像关系型数据库中,要对多表进行关联查询。仅需要根据id取出相应的value就可以完成查询。
2.适用于SNS(Social Networking Services)中,例如facebook,微博。系统的升级,功能的增加,往往意味着数据结构巨大变动,这一点关系型数据库难以应付,需要新的结构化数据存储。由于不可能用一种数据结构化存储应付所有的新的需求,因此,非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。

4.不足:


只适合存储一些较为简单的数据,对于需要进行较复杂查询的数据,关系型数据库显的更为合适。不适合持久存储海量数据

5.非关系型数据库的分类


非关系型数据库都是针对某些特定的应用需求出现的,因此,对于该类应用,具有极高的性能。依据结构化方法以及应用场合的不同,主要分为以下几类:

5.1面向高性能并发读写的key-value数据库:


key-value数据库的主要特点是具有极高的并发读写性能
Key-value数据库是一种以键值对存储数据的一种数据库,类似Java中的map。可以将整个数据库理解为一个大的map,每个键都会对应一个唯一的值。
主流代表为Redis, Amazon DynamoDB, Memcached
Microsoft Azure Cosmos DB和Hazelcast

5.2面向海量数据访问的面向文档数据库:


这类数据库的主要特点是在海量的数据中可以快速的查询数据
文档存储通常使用内部表示法,可以直接在应用程序中处理,主要是JSON。JSON文档也可以作为纯文本存储在键值存储或关系数据库系统中。
主流代表为MongoDB,Amazon DynamoDB,Couchbase,
Microsoft Azure Cosmos DB和CouchDB

5.3面向搜索数据内容的搜索引擎:


搜索引擎是专门用于搜索数据内容的NoSQL数据库管理系统。
主要是用于对海量数据进行近实时的处理和分析处理,可用于机器学习和数据挖掘
主流代表为Elasticsearch,Splunk,Solr,MarkLogic和Sphinx

5.4面向可扩展性的分布式数据库:


这类数据库的主要特点是具有很强的可拓展性
普通的关系型数据库都是以行为单位来存储数据的,擅长以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被成为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
这类数据库想解决的问题就是传统数据库存在可扩展性上的缺陷,这类数据库可以适应数据量的增加以及数据结构的变化,将数据存储在记录中,能够容纳大量动态列。由于列名和记录键不是固定的,并且由于记录可能有数十亿列,因此可扩展性存储可以看作是二维键值存储。
主流代表为Cassandra,HBase,Microsoft Azure Cosmos DB,Datastax Enterprise和Accumulo

6.CAP理论


NoSQL的基本需求就是支持分布式存储,严格一致性与可用性需要互相取舍
CAP理论:一个分布式系统不可能同时满足C(一致性)、A(可用性)、P(分区容错性)三个基本需求,并且最多只能满足其中的两项。对于一个分布式系统来说,分区容错是基本需求,否则不能称之为分布式系统,因此需要在C和A之间寻求平衡
C(Consistency)一致性
一致性是指更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致。与ACID的C完全不同
A(Availability)可用性
可用性是指服务一直可用,而且是正常响应时间。
P(Partition tolerance)分区容错性
分区容错性是指分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务。

 

 

以上段落摘录:https://www.jianshu.com/p/fd7b422d5f93


三、关系型与非关系型数据库的比较

1.成本:Nosql数据库简单易部署,基本都是开源软件,不需要像使用Oracle那样花费大量成本购买使用,相比关系型数据库价格便宜。


2.查询速度:Nosql数据库将数据存储于缓存之中,而且不需要经过SQL层的解析,关系型数据库将数据存储在硬盘中,自然查询速度远不及Nosql数据库。


3.存储数据的格式:Nosql的存储格式是key,value形式、文档形式、图片形式等等,所以可以存储基础类型以及对象或者是集合等各种格式,而数据库则只支持基础类型。


4.扩展性:关系型数据库有类似join这样的多表查询机制的限制导致扩展很艰难。Nosql基于键值对,数据之间没有耦合性,所以非常容易水平扩展。


5.持久存储:Nosql不使用于持久存储,海量数据的持久存储,还是需要关系型数据库


6.数据一致性:非关系型数据库一般强调的是数据最终一致性,不像关系型数据库一样强调数据的强一致性,从非关系型数据库中读到的有可能还是处于一个中间态的数据,Nosql不提供对事务的处理。

以上段落摘录:https://www.jianshu.com/p/fd7b422d5f93

 关系型数据库:
1) 关系数据库的特点是:
- 数据关系模型基于关系模型,结构化存储,完整性约束。
- 基于二维表及其之间的联系,需要连接、并、交、差、除等数据操作。
- 采用结构化的查询语言(SQL)做数据读写。
- 操作需要数据的一致性,需要事务甚至是强一致性。
2) 优点:
- 保持数据的一致性(事务处理)
- 可以进行join等复杂查询。
- 通用化,技术成熟。
3) 缺点:
- 数据读写必须经过sql解析,大量数据、高并发下读写性能不足。
- 对数据做读写,或修改数据结构时需要加锁,影响并发操作。
- 无法适应非结构化存储。
- 扩展困难。
- 昂贵、复杂。

NoSQL数据库:
1) NoSQL数据库的特点是:
- 非结构化的存储。
- 基于多维关系模型。
- 具有特有的使用场景。
2) 优点:
- 高并发,大数据下读写能力较强。
- 基本支持分布式,易于扩展,可伸缩。
- 简单,弱结构化存储。
3) 缺点:
- join等复杂操作能力较弱。
- 事务支持较弱。
- 通用性差。
- 无完整约束复杂业务场景支持较差。

以上段落摘录:http://blog.itpub.net/15498/viewspace-2135304/

1.有了mysql和redis,为啥还用MongoDB

介绍

  • MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。
  • MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。

特点

它的特点是高性能、易部署、易使用,存储数据非常方便。主要功能特性有:

面向集合存储,易存储对象类型的数据。
模式自由。
支持动态查询。
支持完全索引,包含内部对象。
支持查询。
支持复制和故障恢复。
使用高效的二进制数据存储,包括大型对象(如视频等)。
自动处理碎片,以支持云计算层次的扩展性。
支持RUBY,PYTHON,JAVA,C ,PHP,C#等多种语言。
文件存储格式为BSON(一种JSON的扩展)。
可通过网络访问。
 

适用场景


从目前阿里云 MongoDB 云数据库上的用户看,MongoDB 的应用已经渗透到各个领域,比如游戏、物流、电商、内容管理、社交、物联网、视频直播等,以下是几个实际的应用案例。

  • 游戏场景,使用 MongoDB 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新
  • 物流场景,使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更新,以 MongoDB
  • 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
  • 社交场景,使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能
  • 物联网场景,使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析
  • 视频直播,使用 MongoDB 存储用户信息、礼物信息等
  • 如果还在犹豫是否使用MongoDB,可以参考下图,如果上述有1个 Yes,可以考虑 MongoDB,2个及以上的 Yes,选择MongoDB绝不会后悔。 

不适场景

  • 高度事务性的系统:例如,银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。
  • 传统的商业智能应用:针对特定问题的BI 数据库会产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。
  • 需要SQL 的问题。

MongoDB与Mysql

MongoDB与Redis

以上段落摘录:https://blog.csdn.net/wphero/article/details/107804868


最后,数据库排名

网站地址:https://db-engines.com/en/ranking

 


彩蛋:列举一些常用非关系数据的介绍

转自:https://www.php.cn/redis/464422.html

 常见的非关系型数据库有:1、mongodb;2、cassandra;3、redis;4、hbase;5、neo4j;其中mongodb是非常著名的NoSQL数据库,它是一个面向文档的开源数据库。

1、MongoDB

MongoDB是最著名的NoSQL数据库。它是一个面向文档的开源数据库。MongoDB是一个可伸缩和可访问的数据库。它在c++中。MongoDB同样可以用作文件系统。在MongoDB中,JavaScript可以作为查询语言使用。通过使用sharding MongoDB水平伸缩。它在流行的JavaScript框架中非常有用。

人们真的很享受分片、高级文本搜索、gridFS和map-reduce功能。惊人的性能和新特性使这个NoSQL数据库在我们的列表中名列第一。

特点:提供高性能;自动分片;运行在多个服务器上;支持主从复制;数据以JSON样式文档的形式存储;索引文档中的任何字段;由于数据被放置在碎片中,所以它具有自动负载平衡配置;支持正则表达式搜索;在失败的情况下易于管理。

优点:易于安装MongoDB;MongoDB Inc.为客户提供专业支持;支持临时查询;高速数据库;无模式数据库;横向扩展数据库;性能非常高。

缺点:不支持连接;数据量大;嵌套文档是有限的;增加不必要的内存使用。

2、Cassandra

Cassandra是Facebook为收件箱搜索开发的。Cassandra是一个用于处理大量结构化数据的分布式数据存储系统。通常,这些数据分布在许多普通服务器上。您还可以添加数据存储容量,使您的服务保持在线,您可以轻松地完成这项任务。由于集群中的所有节点都是相同的,因此不需要处理复杂的配置。

Cassandra是用Java编写的。Cassandra查询语言(CQL)是查询Cassandra数据库的一种类似sql的语言。因此,Cassandra在最佳开源数据库中排名第二。Facebook、Twitter、思科(Cisco)、Rackspace、eBay、Twitter、Netflix等一些最大的公司都在使用Cassandra。

特点:线性可伸缩;;保持快速响应时间;支持原子性、一致性、隔离性和耐久性(ACID)等属性;使用Apache Hadoop支持MapReduce;分配数据的最大灵活性;高度可伸缩;点对点架构。

优点:高度可伸缩;无单点故障;Multi-DC复制;与其他基于JVM的应用程序紧密集成;更适合多数据中心部署、冗余、故障转移和灾难恢复。

缺点:对聚合的有限支持;不可预知的性能;不支持特别查询。

3、Redis

Redis是一个键值存储。此外,它是最著名的键值存储。Redis支持一些c++、PHP、Ruby、Python、Perl、Scala等等。Redis是用C语言编写的。此外,它是根据BSD授权的。

特点:自动故障转移;将其数据库完全保存在内存中;事务;Lua脚本;将数据复制到任意数量的从属服务器;钥匙的寿命有限;LRU驱逐钥匙;支持发布/订阅。

优点:支持多种数据类型;很容易安装;非常快(每秒执行约11万组,每秒执行约81000次);操作都是原子的;多用途工具(在许多用例中使用)。

缺点:不支持连接;存储过程所需的Lua知识;数据集必须很好地适应内存。

4、HBase

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。

HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

5、neo4j

Neo4j被称为原生图数据库,因为它有效地实现了属性图模型,一直到存储层。这意味着数据完全按照白板的方式存储,数据库使用指针导航和遍历图。Neo4j有数据库的社区版和企业版。企业版包括Community Edition必须提供的所有功能,以及额外的企业需求,如备份、集群和故障转移功能。

特点:它支持唯一的约束;Neo4j支持完整的ACID(原子性、一致性、隔离性和持久性)规则;Java API: Cypher API和本机Java API;使用Apache Lucence索引;简单查询语言Neo4j CQL;包含用于执行CQL命令的UI: Neo4j Data Browser。

优点:容易检索其相邻节点或关系细节,无需连接或索引;易于学习Neo4j CQL查询语言命令;不需要复杂的连接来检索数据;非常容易地表示半结构化数据;大型企业实时应用程序的高可用性;简化的调优。

缺点:不支持分片。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/444829
推荐阅读
相关标签
  

闽ICP备14008679号