当前位置:   article > 正文

yolov4/yolov4-tiny保姆级训练教学_yolov4 pytorch环境配置

yolov4 pytorch环境配置

目录

一、pytorch环境搭建

1.创建新环境

2.激活环境

3.按照版本下载

二、labelimg的安装

三、数据处理部分

         1、rename数据文件

2、数据加强

 四、yolov4训练过程

五、租用GPU


一、pytorch环境搭建

在安装anaconda的前提下

在编译器pycharm的终端

1.创建新环境

conda create -n pytorch1.6_cuda10.2 python=3.7

//创从大python3.7pytorch1.6的编译环境

2.激活环境

conda activate pytorch1.6_cuda10.2   

3.按照版本下载

conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly -c pytorch

//只安装cpu版本的pytorch1.6

(这个地方我不确定你是不是能装gpu 先用cpu试试看训练效果)

txt中的文件包含现在需要的环境

设置一个requirements.txt

pip install -r requirements.txt -i  ttps://pypi.doubanio.com/simple/

剩下的一些函数或者函数名调用过程中出现问题

直接用pycharm 设置部分的可用包直接pip

或者pip install scipy -i Simple Index

改红色地方的东西为 函数名比如yaml

二、labelimg的安装

1.win+R输入cmd打开终端

conda activate pytorch1.6_cuda10.2 (激活环境)

2、直接pip install labelimg

三、数据处理部分

1、rename数据文件

保证你的文件要是jpg形式或者png   若出现前后不一致 在python文件中无法调用

数据处理部分

改正文件路径

在之前文件是jpg    修改if后面的‘.jpg’     

JPG文件 的时候  j=2进行修改 续在之前文件的后面

①打标记的时候用有序序列的图像 可以不标注图片 但是一定要用labelimg所有图片都过一便,否则会在voc_label处出现 images和annotation处无法对应。

②数据加强可以通过opencv简单处理  或者有旋转即可

按照 images和annatation分别放置文件夹 按照yolo操作步骤重新操作

2、数据加强

● 将数据增强模块嵌入model中
● 在Dataset数据集中进行数据增强

或者可以自定义函数来增强数据

如:调整图像饱和度

  1. #visualize(image, saturated)
  2. image = tf.expand_dims(images[3]*255, 0)
  3. saturated = tf.image.adjust_saturation(image, 3)
  4. plt.figure(figsize=(8, 8))
  5. for i in range(9):
  6. augmented_image = aug_img(saturated)
  7. ax = plt.subplot(3, 3, i + 1)
  8. plt.imshow(augmented_image[0].numpy().astype("uint8"))
  9. plt.axis("off")

对图像进行裁剪等

  1. image = tf.expand_dims(images[3]*255, 0)
  2. cropped = tf.image.central_crop(image, central_fraction=0.5)
  3. plt.figure(figsize=(8, 8))
  4. for i in range(9):
  5. augmented_image = aug_img(cropped)
  6. ax = plt.subplot(3, 3, i + 1)
  7. plt.imshow(augmented_image[0].numpy().astype("uint8"))
  8. plt.axis("off")

 四、yolov4训练过程

1.data数据当中

改文件中类的名称和数据

例如:

6类水果

Apple

Mango

Banana

nongfushanquan

toothbrush

wanglaoji

 

2.运行文件中的kmeans文件

 

出现上述问题 说明标签的大小统一 无法进行k聚类算法 调整k值为2或者3(正常为6)

运行结束后打开 kmeans.txt文件

复制结果

 

3.打开cfg文件中的yolo—tiny

快捷键ctrl+f 搜索yolo

anchors = 84,112, 273,273,84,112, 273,273,84,112, 273,273

classes=6

上一层的filter   (类别数+5*3   先验框
filters=33

yolo有两处 均需要改

4.运行makeTxt.py

区分训练集和验证集

5.voc_label.py

其中修改classes为数据内容

并改正list_file.write当中的文件路径

运行voc_label.py文件

6.可以开始训练程序

 

对当前的数据集和训练要求来改正其中的default内容

注意在路径部分 可以用///来更改路径 或者在路径前面+r    //

train.py  
parser.add_argument('--cfg', type=str, default='cfg/csdarknet53s-BIFPN-spp-CA-GTSDB.cfg', help='model.yaml path')

parser.add_argument('--data', type=str, default='data/GTSDB.yaml', help='data.yaml path')

五、租用GPU

如果自己没有训练条件的话,可以租用网上的gpu 教程如下

  1. 百度搜索gpushare
  2. 创建pytorch环境

​​​​​​​

3.点击文件 站点管理器登录

4.将压缩文件传输至hy-tmp文件夹中

先把requirements文件放进去 后面备用

5.

打开jupyterlab 终端

创建环境

conda create -n py python=3.7

conda activate py

conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.2 -c pytorch

cd /hy-tmp #1s  ##打开文件夹

pip install -r requirements.txt    安装所需要的文件

记得里面要加  pyyaml 和 scipy

解压:unzip  1.zip

打开文件夹:cd tea #1s

运行代码   python train.py 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/488371
推荐阅读
相关标签
  

闽ICP备14008679号