当前位置:   article > 正文

大数据&人工智能学习路线(小白都可以看懂-从入门到精通)_大数据人工智能学什么

大数据人工智能学什么

大数据&人工智能学习路线

先来看一个大数据网站所需用到的技术图
在这里插入图片描述
学习技术
Linux:大数据基础,hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,通常都是搭建在Linux操作系统之上。
Hadoop:Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。Hadoop是一个数据管理系统,作为数据分析的核心,汇集了结构化和非结构化的数据,这些数据分布在传统的企业数据栈的每一层。Hadoop也是一个大规模并行处理框架,拥有超级计算能力,定位于推动企业级应用的执行。Hadoop又是一个开源社区,主要为解决大数据的问题提供工具和软件。虽然Hadoop提供了很多功能,主要由HDFS、MapReduce、Hbase、Zookeeper、Oozie、Pig、Hive等核心组件构成,另外还包括Sqoop、Flume等框架,用来与其他企业融合。同时,Hadoop生态系统也在不断增长,新增Mahout、Ambari、Whirr、BigTop等内容,以提供更新功能。
Zookeeper:Zookeeper是一个开放源码的分布式应用程序协调服务,是 Google的Chubby一个开源的实现,是 Hadoop和 HBASE的重要组件。主要解决分布式应用一致性问题。
Mysql:MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。
Sqoop:Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Hive:hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。hive是十分适合数据仓库的统计分析和Windows注册表文件。
Oozie:Oozie由Cloudera公司贡献给Apache的基于工作流引擎的开源框架,是用于Hadoop平台的开源的工作流调度引擎,是用来管理Hadoop作业,属于web应用程序,由Oozie client和Oozie Server两个组件构成,Oozie Server运行于Java Servlet容器(Tomcat)中的web程序。
Hbase:HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。
Kafka:Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。
Spark:Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载,可用来构建大型的、低延迟的数据分析应用程序。
后续提高
机器学习(Machine Learning, ML):机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
深度学习(Deep Learning, DL):深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

参考文章
[1].https://blog.csdn.net/qq_39658251/article/details/79782094
[2].https://blog.csdn.net/duozhishidai/article/details/89556296
[3].https://www.cnblogs.com/safelanding/p/11008529.html
[4].https://baike.baidu.com/item/sqoop/5033853?fr=aladdin
[5].https://www.runoob.com/mysql/mysql-tutorial.html
[6].https://baike.baidu.com/item/hive/67986?fr=aladdin
[7].https://www.cnblogs.com/cac2020/p/10509950.html
[8].https://baike.baidu.com/item/HBase/7670213?fr=aladdin
[9].https://baike.baidu.com/item/Kafka/17930165?fr=aladdin
[10].https://baike.baidu.com/item/SPARK/2229312?fr=aladdin
[11].https://baike.baidu.com/item/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/217599?fr=aladdin
[12].https://baike.baidu.com/item/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0/3729729?fr=aladdin

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/526040
推荐阅读
相关标签
  

闽ICP备14008679号