当前位置:   article > 正文

深入理解LSTM神经网络_lstm什么时候提出的

lstm什么时候提出的

本文内容及图片主要参考:Understanding LSTM Networks

LSTM核心思想

LSTM最早由 Hochreiter & Schmidhuber 在1997年提出,设计初衷是希望能够解决神经网络中的长期依赖问题,让记住长期信息成为神经网络的默认行为,而不是需要很大力气才能学会。

LSTM记忆单元

LSTM-RNN展开图

图例

下面是对LSTM单元内各部分的理解:

LSTM的关键是单元状态(cell state),即图中LSTM单元上方从左贯穿到右的水平线,它像是传送带一样,将信息从上一个单元传递到下一个单元,和其他部分只有很少的线性的相互作用。
这里写图片描述

LSTM通过“门”(gate)来控制丢弃或者增加信息,从而实现遗忘或记忆的功能。“门”是一种使信息选择性通过的结构,由一个sigmoid函数和一个点乘操作组成。sigmoid函数的输出值在[0,1]区间,0代表完全丢弃,1代表完全通过。一个LSTM单元有三个这样的门,分别是遗忘门(forget gate)、输入门(input gate)、输出门(output gate)

门(gate)

  • 遗忘门(forget gate):遗忘门是以上一单元的输出ht1和本单元的输入xt为输入的sigmoid函数,为
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/591892
推荐阅读
相关标签
  

闽ICP备14008679号