当前位置:   article > 正文

深度学习项目-MobileNetV2水果识别模型

mobilenetv2

FruitRecognition

DeepLearning深度学习小项目,利用CNN和MobileNetV2搭建的水果识别模型。
(github地址)https://github.com/Giperx/FruitRecognition


fruit为本次大作业使用的数据集。
geneFruit为数据增强后的数据集。
FruitRecognition为本次大作业相关代码及相关曲线热力图。

项目使用conda环境进行训练,
相关测试版本如下:

nameversion
python3.7.3
tensorflow-cpu2.3.0

环境复现:

项目根目录(github)下有environment.yml 为虚拟环境导出的配置文件

yml文件移动到conda相关文件目录下

进入Anaconda Prompt任意环境下运行
conda env create -f environment.yml

自动安装相关依赖,复现虚拟环境。


一、概述

1、项目背景

2、项目意义

3、问题定义

二、构建模型

1、数据样本

2、模型结构

2.1 CNN结构

2.2 MobileNetV2结构

三、实验结果

1、CNN训练过程及分析

2、MobileNetV2训练过程及分析

四、总结


CNNTrain.py

数据集加载函数、CNN相关模型函数构建、训练、准确率、损失曲线绘制函数

MobileNetTrain.py

数据集加载函数、MobileNet相关模型函数构建、训练、准确率、损失曲线绘制函数

testModel.py

测试上面保存的两个模型文件,含测试函数以及heatmap热力图绘制函数。

geneImage.py

数据增强使用,扩大数据集

一、 概述

1. 项目背景

 水果是人们日常生活中重要的食品之一,其营养丰富、口感美味、色香俱佳,因此备受广大消费者的喜爱。
然而,在市场上,各种不同品种的水果琳琅满目,对于人类的肉眼识别来说并不容易实现。传统的检测方法需要人工参与,效率低下,成本高昂,
同时还容易出现误判和漏检等问题。基于此,利用计算机视觉技术开发水果识别系统,能够极大地提升水果检测的效率,
减少人工介入,为消费者提供更好的服务体验。

2. 研究意义

 随着智能手机、平板电脑等移动设备的广泛应用,人们越来越需要将物理世界和数字世界相结合。在这个环境下,开发一款高效、精准的水果识别系统,有助于优化用户体验,提高生产效率,降低生鲜水果流通损失率,从而推动整个水果行业的数字化转型。

3. 问题定义

 本项目旨在研究利用深度学习模型进行水果图像分类的方法,具体包括两个主要任务:一是使用卷积神经网络(CNN)模型进行水果图片的分类,二是探索轻量级神经网络模型MobileNetV2在水果图像分类中的应用。

二、 构建模型

1、 数据样本

使用百度飞桨-公共数据集
https://aistudio.baidu.com/aistudio/datasetdetail/193821

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tBhSeKSj-1686887834522)(PhotoForReadme/0.png)]

 因为30种水果种类过多,不便于后续的热力图生成与结果分析,所以只取其中的15类水果数据,并按照4:1对数据集进行划分为训练集和测试集。
有以下15类:哈密瓜、柠檬、桂圆、梨、榴莲、火龙果、猕猴桃、胡萝卜、芒果、苦瓜、草莓、荔枝、菠萝、车厘子、黄瓜。
数据集中的图片的尺寸大小并不统一,所以在进行模型训练以及验证之前,定义了加载数据集的函数。

def data_load(data_dir, test_data_dir, img_height, img_width, batch_size)
  • 1

 通过传入的img_height, img_width参数,调用TensorFlow函数

def train_ds = tf.keras.preprocessing.image_dataset_from_directory(
        data_dir,
        label_mode='categorical',
        seed=123,
        image_size=(img_height, img_width),
        batch_size=batch_size) 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

 将数据集图片全部处理成img_height * img_width的大小即224*224.

2、 模型结构

 一是使用卷积神经网络(CNN)模型进行水果图片的分类,二是探索轻量级神经网络模型MobileNetV2在水果图像分类中的应用。

2.1 CNN结构

通过TensorFlow构建CNN模型

CNN结构

模型定义函数如下:

def model_load(IMG_SHAPE=(223, 224, 3), class_num=15):
    # 搭建模型
    model = tf.keras.models.Sequential([
        # 对模型做归一化的处理
        tf.keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=IMG_SHAPE),
        # 卷积层
        tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
        # 池化层
        tf.keras.layers.MaxPooling2D(2, 2),
        # 卷积层
        tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
        # 池化层
        tf.keras.layers.MaxPooling2D(2, 2),
        # 二维输出转化一维
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(class_num, activation='softmax')
    ])
    # 输出模型信息
    model.summary()
    opt = tf.keras.optimizers.SGD(learning_rate=0.005)
    model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
    return model

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
模型介绍:

在这里插入图片描述
 首先将输入的图片进行归一化处理到0~1之间。然后就是两层卷积层,第一层将通道数由3进行升维到32,第二层则由32升维到64,两层卷积层的卷积核大小都是33,默认步长为1。每层卷积之后都使用Max最大池化,大小22,使用默认步长为2.然后通过Flatten将输出展开到一维长度,随后是一个全连接层,输出到128个神经元。激活函数全部使用的是ReLU。最后一层全连接层,输出映射到15个神经元,因为数据集中是15种水果,采用softMax激活函数,用来预测每个类别的概率。

2.2 MobileNetV2结构

 MobileNet的基本单元是深度可分离卷积,实质是一种可分解卷积操作。可分为两个更小的操作:Depthwise convolution和Pointwise convoluton。
标准的卷积核DkDkM是对与输入通道数M进行卷积操作,N个卷积核。

在这里插入图片描述

 而MobileNet的Depthwise是对每个输入通道进行分别的卷积 。因为这属于分组卷积,所以在进行卷积操作以后为了减少信息损失,然后再用pointwise convolution也就是1*1的卷积核进行卷积。

在这里插入图片描述
在这里插入图片描述

 通过Depthwise convolution和Pointwise convoluton深度可分离卷积以后的整体效果和一个标准卷积差不多,但因为是对不同的通道进行分别卷积,相较于常规的对整体所有通道进行卷积,可以显著的减少计算量,通过pointwise convolution又不损失信息不减少精度,速度更快。

在这里插入图片描述

 而MobileNetV2相较于V1的改进,是使用了反向线性残差结构。

在这里插入图片描述

 先采用了1 * 1卷积进行了升维,然后采用3 * 3深度可分离卷积进行特征提取,最后用1 * 1卷积进行降维,降维时不采用激活函数。V2比V1的参数量和计算量会更小、准确率会更高。
模型定义函数如下:

def model_load(IMG_SHAPE=(224, 224, 3), class_num=15):
	#加载预训练的mobilenet模型
    base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
                                                   include_top=False,
                                                   weights='imagenet')
    base_model.trainable = False
    model = tf.keras.models.Sequential([
        # 进行归一化的处理
        tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE),
        # 主干模型
        base_model,
        #全局平均池化
        tf.keras.layers.GlobalAveragePooling2D(),
        # 全连接层
        tf.keras.layers.Dense(class_num, activation='softmax')
    ])
    model.summary()
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
模型介绍:

 迁移学习调用了在ImageNet上预训练后的MobileNetV2模型,并去除了顶部的全连接层只留下里面的卷积层和池化层,作为我们的主干模型。冻结了主干模型的参数以适应我们后面自己添加的全连接层的训练,可以加快训练速度。

在这里插入图片描述

 整个模型先进行归一化,映射到-1~1之间,然后通过我们的主干模型,接着是全局平均池化转化为固定长度的向量。然后就是一个全连接层,映射到class_num个神经元上,也就是我们的水果种类的数量15,通过softmax激活函数预测每个水果类别的概率。

三、 实验结果

1、 CNN训练过程及分析

 除了定义数据集加载函数data_load和模型构建函数model_load外,还定义了showAccuracyAndLoss(history)用来从history中提取模型训练集和验证集的准确率和误差损失,绘制训练过程中的loss和accuracy曲线图。

def data_load(data_dir, test_data_dir, img_height, img_width, batch_size)
def model_load(IMG_SHAPE=(224, 224, 3), class_num=15)
def show_loss_acc(history)
  • 1
  • 2
  • 3

 在train(epochs)函数中调用history = model.fit(train_ds, validation_data=val_ds, epochs=epochs)进行训练,通过model.save(“models/cnn_fv.h5”)保存为模型文件。

 定义了test_cnn()函数通过保存的模型文件对验证集进行验证,并通过showHM绘制heatmap热力图。
 先使用sgd随机梯度下降优化器和categorical_crossentropy
多分类交叉熵损失函数,epcoh=10进行训练,默认学习率0.01。

在这里插入图片描述
在这里插入图片描述

 在第10轮时训练集的准确率只有74%,明显训练轮次过少,调整epoch=25重新训练。

在这里插入图片描述

 观察曲线,在18轮以后,训练集的准确率就已经达到了100%,而测试集上的准确率只有50%,随着轮次的增加,测试集上的交叉熵损失值也在增加,发生过拟合。

在这里插入图片描述

 测试集的热力图表现出来的准确率也比较差。
 调整学习率,由0.01降为0.05,其它不变,重新训练。

在这里插入图片描述

 效果不佳。继续降低学习率为0.001,epoch增加到40,重新训练。

在这里插入图片描述

 相较于最初的0.01学习率,测试集上的交叉熵损失在2一下,更低了一点,但是测试集上的准确率还是没有得到很大的提高。

在这里插入图片描述

 改变优化器,使用Adam优化器,epoch=40,其它保持不变,学习率默认0.01

在这里插入图片描述

 在第10轮时对于训练集的准确率就已经100%,而测试集的交叉熵损失反而达到4以上,比使用sgd优化器时的过拟合更加严重。

在这里插入图片描述

 尝试调整CNN网络结构。

在这里插入图片描述

 首尾增加2个卷积层池化层,Flatten展开一维后增加1个全连接层,训练70轮,使用sgd优化器和多分类交叉熵损失函数,效果不理想。

在这里插入图片描述

 排查原因,首要原因是数据集的问题,对于像荔枝的数据集,在我们这个模型中预测出来的草莓的概率反而比荔枝更高。查看数据集图片发现这个数据集样本量不够大,荔枝只有156张图片,而且有剥开皮的、还没熟透绿色的、照片调色过艳的,类型过杂图片过少造成预测准确率低。

在这里插入图片描述

 利用tensorFlow的ImageDataGenerator对训练集进行数据增强,加上原来的数据集部分,扩大为原来的5倍。

datagen = ImageDataGenerator(
    rotation_range=40,  # 随机旋转角度范围
    width_shift_range=0.2,  # 随机水平平移范围(相对于图片宽度)
    height_shift_range=0.2,  # 随机竖直平移范围(相对于图片高度)
    shear_range=0.2,  # 随机裁剪
    zoom_range=0.2,  # 随机缩放
    horizontal_flip=True,  # 随机水平翻转
    vertical_flip=True,  # 随机竖直翻转
    fill_mode='nearest')  # 填充模式
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

 使用最早定义的CNN网络,epoch=15,sgd优化器和多分类交叉熵损失函数,训练结果如下:
在这里插入图片描述

 使用原始的测试集测试后的热力图:
在这里插入图片描述

 对数据增强后的测试集进行测试,测试结果热力图:
在这里插入图片描述

2、 MobileNetV2训练过程及分析

 使用adam优化器和sgd随机梯度下降优化器和categorical_cr ossentropy多分类交叉熵损失函数,默认学习率0.01,epoch=10进行训练。

在这里插入图片描述

 可以观察到在第6轮训练时,训练集上的准确率就已经达到了100%,而且测试集上的准确率也有90%以上,交叉熵损失达到0.5以下。训练效果非常好。
 对原始测试集测试热力图如下:
在这里插入图片描述

 对数据增强后的测试集,测试热力图如下:
在这里插入图片描述

 相比原测试集,准确率只有几类水果稍微下降。

 由此得知,相比较于从头开始训练一个自己的CNN模型,利用迁移学习使用预训练过的MobileNetV2作为主干,利用它在ImageNet上学到的特征,在此基础上进行微调适应自己的数据集,可以显著降低训练时间和成本,大大提高准确度。

四、总结

 在本项目中着重探索了利用深度学习模型进行水果图像分类的方法。具体而言包括使用卷积神经网络(CNN)模型进行水果图片的分类和探索轻量级神经网络模型MobileNetV2在水果图像分类中的应用。

 在第一项任务中,使用TensorFlow构建了一个简单的CNN模型,并通过调整模型参数来提高准确率。在实验过程中发现由于数据集的问题,训练结果并不理想,测试集上的准确率低于预期,同时出现了过拟合的情况。针对这个问题,从优化器、学习率和训练轮次等方面入手,对模型进行了改进和调整。但是由于数据集本身的局限性,改进效果并不显著。后续对数据集进行数据增强,效果相对右改善。因此使用迁移学习中的MobileNetV2模型进行图像分类。

 在第二项任务中,使用预训练的MobileNetV2模型作为主干模型,并对其进行微调以适应自己的数据集。通过这种方法成功地提高了分类准确率。 迁移学习对于解决小规模数据集上的图像分类问题具有重要意义。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/678066
推荐阅读
相关标签
  

闽ICP备14008679号