赞
踩
探索之前,先简单介绍下各种 IO 模型:
最容易做的是阻塞 IO,即读写数据时,需要等待操作完成,才能继续执行。进阶的做法就是用多线程来处理需要 IO 的部分,缺点是开销会有些大。
接着是非阻塞 IO,即读写数据时,如果暂时不可读写,则立刻返回,而不等待。因为不知道什么时候是可读写的,所以轮询时可能会浪费 CPU 时间。
然后是 IO 复用,即在读写数据前,先检查哪些描述符是可读写的,再去读写。select 和 poll 就是这样做的,它们会遍历所有被监视的描述符,查看是否满足,这个检查的过程是阻塞的。而 epoll、kqueue 和 /dev/poll 则做了些改进,事先注册需要检查哪些描述符的哪些事件,当状态发生变化时,内核会调用对应的回调函数,将这些描述符保存下来;下次获取可用的描述符时,直接返回这些发生变化的描述符即可。
再之后是信号驱动,即描述符就绪时,内核发送 SIGIO 信号,再由信号处理程序去处理这些信号即可。不过信号处理的时机是从内核态返回用户态时,感觉也得把这些事件收集起来才好处理,有点像模拟 IO 复用了。
最后是异步 IO,即读写数据时,只注册事件,内核完成读写后(读取的数据会复制到用户态),再调用事件处理函数。这整个过程都不会阻塞调用线程,不过实现它的操作系统比较少,Windows 上有比较成熟的 IOCP,Linux 上的 AIO 则有不少缺点。
虽然真正的异步 IO 需要中间任何步骤都没有阻塞,这对于某些只是偶尔需要处理 IO 请求的情况确实有用(比如文本编辑器偶尔保存一下文件);但对于服务器端编程的大多数情况而言,它的主线程就是用来处理 IO 请求的,如果在空闲时不阻塞在 IO 等待上,也没有别的事情能做,所以本文就不纠结这个异步是否名副其实了。
在 Python 2 的时代,高性能的网络编程主要是使用 Twisted、Tornado 和 gevent 这三个库。
我对 Twisted 不熟,只知道它的缺点是比较重,性能相对而言并不算好。
Tornado 平时用得比较多,缺点是写异步调用时特别麻烦。
gevent 我只能算接触过,缺点是不太干净。
由于它们都各自有一个 IO loop,不好混用,而 Tornado 的 web 框架相对而言比较完善,因此成了我的首选。
而从 Python 3.4 开始,标准库里又新增了 asyncio 这个模块。
从原理上来说,它和 Tornado 其实差不多,都是注册 IO 事件,然后在 IO loop 中等待事件发生,然后调用相应的处理函数。
不同之处在于 Python 3 增加了一些新的特性,而 Tornado 需要兼容 Python 2,所以写起来会比较麻烦。
举例来说,Python 3.3 可以在 generator 中 return 返回值(相当于 raise StopIteration),而 Tornado 中需要 raise 一个 Return 对象。此外,Python 3.3 还增加了 yield from 语法,减轻了在 generator 中处理另一个 generator 的工作量(省去了循环和 try … except …)。
不过,虽然 asyncio 有那么多得天独厚的优势,却不一定比 Tornado 的性能更好,所以我写个简单的例子测试一下。
比较方法就是写个最简单的 HTTP 服务器,不做任何检查,读取到任何内容都输出一个 hello world,并断开连接。
测试的客户端就懒得写了,直接用 ab 即可:
ab -n 10000 -c 10 "http://0.0.0.0:8000/"
Tornado 版是这样:
from tornado.gen import coroutine from tornado.ioloop import IOLoop from tornado.tcpserver import TCPServer class Server(TCPServer): @coroutine def handle_stream(self, stream, address): try: yield stream.read_bytes(1024, partial=True) yield stream.write(b'HTTP 1.0 200 OK\r\n\r\nhello world') finally: stream.close() server = Server() server.bind(8000) server.start(1) IOLoop.current().start()
在我的电脑上大概 4000 QPS。
asyncio 版是这样:
import asyncio class Server(asyncio.Protocol): def connection_made(self, transport): self.transport = transport def data_received(self, data): try: self.transport.write(b'HTTP/1.1 200 OK\r\n\r\nhello world') finally: self.transport.close() loop = asyncio.get_event_loop() server = loop.create_server(Server, '', 8000) loop.run_until_complete(server) loop.run_forever()
在我的电脑上大概 3000 QPS,比 Tornado 版慢了一些。此外,asyncio 的 transport 在 write 时不用 yield from,这点可能有些不一致。
asyncio 还有个高级版的 API:
import asyncio
@asyncio.coroutine
def handle(reader, writer):
yield from reader.read(1024)
writer.write(b'HTTP/1.1 200 OK\r\n\r\nhello world')
yield from writer.drain()
writer.close()
loop = asyncio.get_event_loop()
task = asyncio.start_server(handle, '', 8000, loop=loop)
server = loop.run_until_complete(task)
loop.run_forever()
在我的电脑上大概 2200 QPS。这下读写都要 yield from 了,一致性上来说会好些。
以框架的性能而言,其实都够用,开销都不超过 1 毫秒,而 web 请求一般都需要 10 毫秒的以上的处理时间。
于是顺便再测一下和 MySQL 的搭配,即在每个请求内调用一下 SELECT 1,然后输出返回值。
因为自己懒得写客户端了,于是就用现成的 tornado_mysql 和 aiomysql 来测试了。原理应该都差不多,发送写请求后就返回,等收到可读事件时再获取内容。
Tornado 版是这样:
from tornado.gen import coroutine from tornado.ioloop import IOLoop from tornado.tcpserver import TCPServer from tornado_mysql import pools class Server(TCPServer): @coroutine def handle_stream(self, stream, address): try: yield stream.read_bytes(1024, partial=True) cursor = yield POOL.execute(b'SELECT 1') data = cursor.fetchone() yield stream.write('HTTP/1.1 200 OK\r\n\r\n{0[0]}'.format(data).encode()) # Python 3.5 的 bytes 才能用 % 格式化 finally: stream.close() POOL = pools.Pool( dict(host='127.0.0.1', port=3306, user='root', passwd='123', db='mysql'), max_idle_connections=10, max_open_connections=10) server = Server() server.bind(8000) server.start(1) IOLoop.current().start()
在我的电脑上大概 680 QPS。
asyncio 版是这样:
import asyncio import aiomysql class Server(asyncio.Protocol): def connection_made(self, transport): self.transport = transport class Server(asyncio.Protocol): def connection_made(self, transport): self.transport = transport def data_received(self, data): @asyncio.coroutine def handle(): with (yield from pool) as conn: cursor = yield from conn.cursor() yield from cursor.execute(b'SELECT 1') result = yield from cursor.fetchone() try: self.transport.write('HTTP/1.1 200 OK\r\n\r\n{0[0]}'.format(result).encode()) finally: self.transport.close() loop.create_task(handle()) # 或者 asyncio.async(handle()) @asyncio.coroutine def get_pool(): return(yield from aiomysql.create_pool(host='127.0.0.1', port=3306, user='root', password='123', loop=loop)) loop = asyncio.get_event_loop() pool = loop.run_until_complete(get_pool()) server = loop.create_server(Server, '', 8000) loop.run_until_complete(server) loop.run_forever()
在我的电脑上大概 1250 QPS,比 Tornado 版快了不少。不过写起来比较蛋疼,因为 data_received 方法里不能直接用 yield from。
用 cProfile 看了下,Tornado 版在 tornado.gen 和 functools 模块里花了不少时间,可能是异步调用过多了吧。
但如果不做异步库的开发者,而只就使用者的体验而言,Tornado 会显得更加灵活和易用。不过 asyncio 的高级 API 应该也能提供类似的体验。
顺便再用底层 socket 模块写个服务器试试。
先用 poll 看看,错误处理什么的就先不做了:
from functools import partial import select import socket class Server: def __init__(self): self._sock = socket.socket() self._poll = select.poll() self._handlers = {} self._fd_events = {} def start(self): sock = self._sock sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) sock.bind(('', 8000)) sock.listen(100) handlers = self._handlers poll = self._poll self.add_handler(sock.fileno(), self._accept, select.POLLIN) while True: poll_events = poll.poll(1) for fd, event in poll_events: handler = handlers.get(fd) if handler: handler() def _accept(self): for i in range(100): try: conn, address = self._sock.accept() except OSError: break else: conn.setblocking(0) fd = conn.fileno() self.add_handler(fd, partial(self._read, conn), select.POLLIN) def _read(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.recv(1024) except: conn.close() raise else: self.add_handler(fd, partial(self._write, conn), select.POLLOUT) def _write(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.send(b'HTTP 1.0 200 OK\r\n\r\nhello world') finally: conn.close() def add_handler(self, fd, handler, event): self._handlers[fd] = handler self.register(fd, event) def remove_handler(self, fd): self._handlers.pop(fd, None) self.unregister(fd) def register(self, fd, event): if fd in self._fd_events: raise IOError("fd %s already registered" % fd) self._poll.register(fd, event) self._fd_events[fd] = event def unregister(self, fd): event = self._fd_events.pop(fd, None) if event is not None: self._poll.unregister(fd) Server().start()
在我的电脑上大概 7700 QPS,优势巨大。
再用 kqueue 试试(我用的是 OS X):
from functools import partial import select import socket class Server: def __init__(self): self._sock = socket.socket() self._kqueue = select.kqueue() self._handlers = {} self._fd_events = {} def start(self): sock = self._sock sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) sock.bind(('', 8000)) sock.listen(100) self.add_handler(sock.fileno(), self._accept, select.KQ_FILTER_READ) handlers = self._handlers while True: kevents = self._kqueue.control(None, 1000, 1) for kevent in kevents: fd = kevent.ident handler = handlers.get(fd) if handler: handler() def _accept(self): for i in range(100): try: conn, address = self._sock.accept() except OSError: break else: conn.setblocking(0) fd = conn.fileno() self.add_handler(fd, partial(self._read, conn), select.KQ_FILTER_READ) def _read(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.recv(1024) except: conn.close() raise else: self.add_handler(fd, partial(self._write, conn), select.KQ_FILTER_WRITE) def _write(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.send(b'HTTP 1.0 200 OK\r\n\r\nhello world') finally: conn.close() def add_handler(self, fd, handler, event): self._handlers[fd] = handler self.register(fd, event) def remove_handler(self, fd): self._handlers.pop(fd, None) self.unregister(fd) def register(self, fd, event): if fd in self._fd_events: raise IOError("fd %s already registered" % fd) self._control(fd, event, select.KQ_EV_ADD) self._fd_events[fd] = event def unregister(self, fd): event = self._fd_events.pop(fd, None) if event is not None: self._control(fd, event, select.KQ_EV_DELETE) def _control(self, fd, event, flags): change_list = (select.kevent(fd, event, flags),) self._kqueue.control(change_list, 0) Server().start()
在我的电脑上大概 7200 QPS,比 poll 版稍慢。不过因为只有 10 个并发连接,而且没有慢速网络的影响,所以 poll 的性能好并不奇怪。
再试试 Python 3.4 新增的 selectors 模块,它的 DefaultSelector 会自动选择所在平台最高效的实现,asyncio 就用到了这个模块。
import selectors import socket class Server: def __init__(self): self._sock = socket.socket() self._selector = selectors.DefaultSelector() def start(self): sock = self._sock sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) sock.bind(('', 8000)) sock.listen(100) selector = self._selector self.add_handler(sock.fileno(), self._accept, selectors.EVENT_READ) while True: events = selector.select(1) for key, event in events: handler, data = key.data if data: handler(**data) else: handler() def _accept(self): for i in range(100): try: conn, address = self._sock.accept() except OSError: break else: conn.setblocking(0) fd = conn.fileno() self.add_handler(fd, self._read, selectors.EVENT_READ, {'conn': conn}) def _read(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.recv(1024) except: conn.close() raise else: self.add_handler(fd, self._write, selectors.EVENT_WRITE, {'conn': conn}) def _write(self, conn): fd = conn.fileno() self.remove_handler(fd) try: conn.send(b'HTTP 1.0 200 OK\r\n\r\nhello world') finally: conn.close() def add_handler(self, fd, handler, event, data=None): self._selector.register(fd, event, (handler, data)) def remove_handler(self, fd): self._selector.unregister(fd) Server().start()
在我的电脑上大概 6100 QPS,成绩也还不错。
从这些测试来看,如果想自己实现一个舍弃了一些功能和兼容性的 Tornado,应该能比它稍快一点,不过似乎没多大必要。
所以暂时不纠结性能了,还是从使用的便利性上来考虑。Tornado 可以用 yield 取代 callback,我们也来实现这个 feature。
实现前先得了解下 yield。
当一个函数内部出现了 yield 语句时,它就不再是一个单纯的函数了,而是一个生成器函数,调用它并不会执行它的代码,而是返回一个生成器。
调用这个生成器的 send 方法时,才会执行内部的代码。当执行到 yield 时,这个 send 方法就返回了,调用者可以得到其返回值。
send 方法在第一次调用时,参数必须为 None。Python 2 中可以用它的 next 方法,Python 3 中改成了 __next__
方法,还可以用内置的 next 函数来调用。
send 方法可以被多次调用,参数会作为 yield 的返回值,回到生成器内上一次执行的地方,并继续执行下去。
当生成器的代码执行完时,会抛出一个 StopIteration
的异常。Python 3.3 开始可以在生成器里使用 return,返回值可以从 StopIteration
异常的 value 属性获取。
for … in … 循环会自动捕获 StopIteration 异常,并作为循环停止的条件。
由此可见,yield 可以用于跳转。而我们要做的,则是在遇到 IO 请求时,用 yield 返回 IO loop;当事件发生时,找到对应的生成器,用 send 方法继续执行即可。
为了简单起见,我就在 poll 版的基础上进行改造了:
from collections import deque import select import socket from types import GeneratorType class Stream: def __init__(self, sock, loop): sock.setblocking(0) self._sock = sock self._loop = loop def close(self): self._sock.close() def read(self, size=1024): sock = self._sock fd = sock.fileno() try: data = sock.recv(size) except OSError as e: if e.errno == socket.EAGAIN or socket.EWOULDBLOCK: self._loop.add_handler(fd, self.read(size), select.POLLIN) yield else: raise else: return data finally: self._loop.remove_handler(fd) def write(self, data): sock = self._sock fd = sock.fileno() try: try: sent_bytes = sock.send(data) except OSError as e: if e.errno not in (socket.EAGAIN, socket.EWOULDBLOCK): raise else: if sent_bytes == len(data): return data = data[sent_bytes:] self._loop.add_handler(fd, self.write(data), select.POLLOUT) yield while data: try: sent_bytes = sock.send(data) except OSError as e: if e.errno not in (socket.EAGAIN, socket.EWOULDBLOCK): raise else: if sent_bytes == len(data): return data = data[sent_bytes:] yield finally: self._loop.remove_handler(fd) class IOLoop: def __init__(self): self._poll = select.poll() self._handlers = {} self._fd_events = {} def start(self): handlers = self._handlers poll = self._poll while True: poll_events = poll.poll(1) for fd, event in poll_events: handler = handlers.get(fd) if handler: if callable(handler): handler() else: stack = handler while True: generator, value = stack[-1] try: value = generator.send(value) if isinstance(value, GeneratorType): stack.append([value, None]) else: break except StopIteration as e: stack.pop() if stack: stack[-1][-1] = e.value else: break def add_handler(self, fd, handler, event): if isinstance(handler, GeneratorType): self._handlers[fd] = deque([[handler, None]]) else: self._handlers[fd] = handler self.register(fd, event) def remove_handler(self, fd): self._handlers.pop(fd, None) self.unregister(fd) def update_handler(self, fd, event): self.modify(fd, event) def register(self, fd, event): if fd in self._fd_events: raise IOError("fd %s already registered" % fd) self._poll.register(fd, event) self._fd_events[fd] = event def unregister(self, fd): event = self._fd_events.pop(fd, None) if event is not None: self._poll.unregister(fd) def modify(self, fd, event): self._poll.modify(fd, event) self._fd_events[fd] = event class Server: def __init__(self): self._sock = socket.socket() self._loop = IOLoop() self._stream = Stream(self._sock, self._loop) def start(self): sock = self._sock sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setblocking(0) sock.bind(('', 8000)) sock.listen(100) self._loop.add_handler(sock.fileno(), self._accept, select.POLLIN) self._loop.start() def _accept(self): for i in range(100): try: conn, address = self._sock.accept() except OSError: break else: stream = Stream(conn, self._loop) fd = conn.fileno() self._loop.add_handler(fd, self._handle(stream), select.POLLIN) def _handle(self, stream): yield stream.read() yield stream.write(b'HTTP 1.0 200 OK\r\n\r\nhello world') Server().start()
在我的电脑上大概 5300 QPS。
虽然成绩比较尴尬,但毕竟用起来比前一个版本好多了。至于慢的原因,我估计是自己维护了一个堆栈的原因(也可能是有什么 bug,毕竟写这个感觉太跳跃了,能运行起来就谢天谢地了)。
实现时做了两点假设:
handler 为 generator 时,视为异步方法。
在异步方法中 yield None 时,视为等待 IO;yield / yield from 异步方法时,则是等待方法返回。
实现细节也没什么好说的了,只是觉得在实现 Stream 的 read / write 方法时,调用 IOLoop.add_handler 方法不太优雅。其实可以直接 yield 一个 fd 和 event,在 IOLoop.start 方法中再去注册。不过这个重构其实蛮小的,我就不再贴一次代码了,感兴趣的可以自己试试。
于是这次初探就到此为止了,有空我也许会继续完善它。至少这次探索,让我觉得 Python 3 还是蛮有意思的。
来源:
https://www.keakon.net/2015/09/07/初探Python3的异步IO编程
https://www.keakon.net/2017/06/28/用Python3的async/await做异步编程
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。