赞
踩
前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。
public List<Integer> preorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<>(); if (root == null){ return result; } Stack<TreeNode> stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()){ TreeNode node = stack.pop(); result.add(node.val); if (node.right != null){ stack.push(node.right); } if (node.left != null){ stack.push(node.left); } } return result; }
为了解释清楚,我说明一下 刚刚在迭代的过程中,其实我们有两个操作:
处理:将元素放进result数组中
访问:遍历节点
分析一下为什么刚刚写的前序遍历的代码,不能和中序遍历通用呢,因为前序遍历的顺序是中左右,先访问的元素是中间节点,要处理的元素也是中间节点,所以刚刚才能写出相对简洁的代码,因为要访问的元素和要处理的元素顺序是一致的,都是中间节点。
那么再看看中序遍历,中序遍历是左中右,先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。
那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
public List<Integer> inorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<>(); if (root == null){ return result; } Stack<TreeNode> stack = new Stack<>(); TreeNode cur = root; while (cur != null || !stack.isEmpty()){ if (cur != null){ stack.push(cur); cur = cur.left; }else{ cur = stack.pop(); result.add(cur.val); cur = cur.right; } } return result; }
再来看后序遍历,先序遍历是中左右,后续遍历是左右中,那么我们只需要调整一下先序遍历的代码顺序,就变成中右左的遍历顺序,然后在反转result数组,输出的结果顺序就是左右中了,如下图:
public List<Integer> postorderTraversal(TreeNode root) { List<Integer> result = new ArrayList<>(); if (root == null){ return result; } Stack<TreeNode> stack = new Stack<>(); stack.push(root); while (!stack.isEmpty()){ TreeNode node = stack.pop(); result.add(node.val); if (node.left != null){ stack.push(node.left); } if (node.right != null){ stack.push(node.right); } } Collections.reverse(result); return result; }
给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。
需要借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
而这种层序遍历方式就是图论中的广度优先遍历,只不过我们应用在二叉树上。
// 102.二叉树的层序遍历 class Solution { public List<List<Integer>> resList = new ArrayList<List<Integer>>(); public List<List<Integer>> levelOrder(TreeNode root) { //checkFun01(root,0); checkFun02(root); return resList; } //DFS--递归方式 public void checkFun01(TreeNode node, Integer deep) { if (node == null) return; deep++; if (resList.size() < deep) { //当层级增加时,list的Item也增加,利用list的索引值进行层级界定 List<Integer> item = new ArrayList<Integer>(); resList.add(item); } resList.get(deep - 1).add(node.val); checkFun01(node.left, deep); checkFun01(node.right, deep); } //BFS--迭代方式--借助队列 public void checkFun02(TreeNode node) { if (node == null) return; Queue<TreeNode> que = new LinkedList<TreeNode>(); que.offer(node); while (!que.isEmpty()) { List<Integer> itemList = new ArrayList<Integer>(); int len = que.size(); while (len > 0) { TreeNode tmpNode = que.poll(); itemList.add(tmpNode.val); if (tmpNode.left != null) que.offer(tmpNode.left); if (tmpNode.right != null) que.offer(tmpNode.right); len--; } resList.add(itemList); } } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。