当前位置:   article > 正文

文本分类之降维技术之特征抽取之LDA线性判别分析_文本属性特征提取 lda

文本属性特征提取 lda

背景:为什么需要特征抽取?

    基于的向量空间模型有个缺点,即向量空间中的每个关键词唯一地代表一个概念或语义单词,也就是说它不能处理同义词和多义词,然而实际情况是:一个词往往有多个不同的含义,多个不同的词可以代表一个概念。在这种情况下,基于的向量空间模型不能很好的解决这种问题。  

  特征抽取方法则可以看作从测量空间到特征空间的一种映射或变换,一般是通过构造一个特征评分函数,把测量空间的数据投影到特征空间,得到在特征空间的值,然后根据特征空间中的值抽取最高的若干个特征。

    常用的特征抽取方法主要有线性判别分析(LDA)、主成分分析(PCA)潜在语义索引(LSI)、非负矩阵分解,因子分析,单词聚类,规则提取等。


1、LDA(线性判别分析) 既可以用于降维,也可以用于多文本的多分类。

LDA是有监督的方式,它先对训练数据进行降维,然后找出一个线性判别函数。

LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning。有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在目前机器学习、数据挖掘领域经典且热门的一个算法,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

    LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器:因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:

image

     当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

    上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:

clip_image002

     红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:

     假设用来区分二分类的直线(投影函数)为:

image

    LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值。

    类别i的原始中心点为:(Di表示属于类别i的点)image

    类别i投影后的中心点为:

image

    衡量类别i投影后,类别点之间的分散程度(方差)为:

image

    最终我们可以得到一个下面的公式,表示LDA投影到w后的损失函数:

image

   我们分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。分母表示每一个类别内的方差之和,方差越大表示一个类别内的点越分散,分子为两个类别各自的中心点的距离的平方,我们最大化J(w)就可以求出最优的w了。想要求出最优的w,可以使用拉格朗日乘子法,但是现在我们得到的J(w)里面,w是不能被单独提出来的,我们就得想办法将w单独提出来。

   我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集Di里面的点距离这个分类的中心店mi越近,则Si里面元素的值就越小,如果分类的点都紧紧地围绕着mi,则Si里面的元素值越更接近0.

image

   带入Si,将J(w)分母化为:

image

image

   同样的将J(w)分子化为:

image

   这样损失函数可以化成下面的形式:

 image

   这样就可以用最喜欢的拉格朗日乘子法了,但是还有一个问题,如果分子、分母是都可以取任意值的,那就会使得有无穷解,我们将分母限制为长度为1(这是用拉格朗日乘子法一个很重要的技巧,在下面将说的PCA里面也会用到,如果忘记了,请复习一下高数),并作为拉格朗日乘子法的限制条件,带入得到:

image

   这样的式子就是一个求特征值的问题了。

   对于N(N>2)分类的问题,我就直接写出下面的结论了:

image

   这同样是一个求特征值的问题,我们求出的第i大的特征向量,就是对应的Wi了。

   这里想多谈谈特征值,特征值在纯数学、量子力学、固体力学、计算机等等领域都有广泛的应用,特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、PCA等等。

以下是一个LDA的例子:

下面我们利用LDA进行一个分类的问题:假设一个产品有两个参数来衡量它是否合格,

我们假设两个参数分别为:

 

参数A

参数B

是否合格

2.95

6.63

合格

2.53

7.79

合格

3.57

5.65

合格

3.16

5.47

合格

2.58

4.46

不合格

2.16

6.22

不合格

3.27

3.52

不合格

 

实验数据来源:http://people.revoledu.com/kardi/tutorial/LDA/Numerical Example.html

所以我们可以根据上图表格把样本分为两类,一类是合格的,一类是不合格的,所以我们可以创建两个数据集类:

cls1_data =

    2.9500    6.6300

    2.5300    7.7900

    3.5700    5.6500

3.1600    5.4700

 

cls2_data =

    2.5800    4.4600

    2.1600    6.2200

    3.2700    3.5200

 

其中cls1_data为合格样本,cls2_data为不合格的样本,我们根据公式(1),(2)可以算出合格的样本的期望值,不合格类样本的合格的值,以及总样本期望:

E_cls1 =

3.0525    6.3850

E_cls2 =

2.6700    4.7333

E_all =

2.8886    5.6771

我们可以做出现在各个样本点的位置:

图一

其中蓝色‘*’的点代表不合格的样本,而红色实点代表合格的样本,天蓝色的倒三角是代表总期望,蓝色三角形代表不合格样本的期望,红色三角形代表合格样本的期望。从xy轴的坐标方向上可以看出,合格和不合格样本区分度不佳。

我们在可以根据表达式(3),(4)可以计算出类间离散度矩阵和类内离散度矩阵:

Sb =

    0.0358    0.1547

0.1547    0.6681

Sw =

    0.5909   -1.3338

   -1.3338    3.5596

我们可以根据公式(7),(8)算出特征值以及对应的特征向量:

=

    0.0000         0

            2.8837

对角线上为特征值,第一个特征值太小被计算机约为0

与他对应的特征向量为

=

   -0.9742   -0.9230

0.2256   -0.3848

根据取最大特征值对应的特征向量:(-0.9230,-0.3848),该向量即为我们要求的子空间,我们可以把原来样本投影到该向量后 所得到新的空间(2维投影到1维,应该为一个数字)

new_cls1_data =

 

   -5.2741

   -5.3328

   -5.4693

   -5.0216

为合格样本投影后的样本值

new_cls2_data =

   -4.0976

   -4.3872

   -4.3727

为不合格样本投影后的样本值,我们发现投影后,分类效果比较明显,类和类之间聚合度很高,我们再次作图以便更直观看分类效果

图二

蓝色的线为特征值较小所对应的特征向量,天蓝色的为特征值较大的特征向量,其中蓝色的圈点为不合格样本在该特征向量投影下来的位置,二红色的‘*’符号的合格样本投影后的数据集,从中个可以看出分类效果比较好(当然由于xy轴单位的问题投影不那么直观)。

我们再利用所得到的特征向量,来对其他样本进行判断看看它所属的类型,我们取样本点

2.815.46),

我们把它投影到特征向量后得到:result -4.6947 所以它应该属于不合格样本。




声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/496958
推荐阅读
相关标签
  

闽ICP备14008679号