赞
踩
即使走的再远,也勿忘启程时的初心
C/C++ 游戏开发
Hello,米娜桑们,这里是君兮_,博主最近一直在钻研动态规划算法,最近在Leetcode上刷题的时候遇到一个Hard难度的动态规划题,今天就借此机会来给大家分享一下我对这个题目的一些看法和解题思路(放心,我是AC了的)
(ps:这个在漫画里真是公主)
这里是为什么呢?我们设想一下,假设此时我们骑士的血很少,下一格无论是朝下还是朝右都会遇到恶魔把我们骑士的血扣为负数,那此时这里的dp值合理吗?很显然是不合理的。因此我们出了考虑前面位置的情况,还要考虑后面路径的情况,岂不是太麻烦了?
这个时候我们要换⼀种状态表示:从[i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,前面的路径不需要考虑,后续的最佳状态已经知晓,这样就极大的简化了我们分析的难度。
综上所述,定义状态表示为:
dp[i][j] 表示:从[i, j] 位置出发,到达终点时所需的最低初始健康点数
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了方便理解,设 dp[i][j] 的最终答案是 x):
i. ⾛到右边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。
通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j]
;
ii. ⾛到下边,然后⾛向终点
那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。
通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j]
;
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])
什么意思呢?就是这里的[i,j]会给恢复一大口血,但是如果此时的dp[i,j]为负数的时候,说明此时这里要求的骑士的最低血量是0或者负数,这显然是不符合要求的,因此我们需要对这种特殊情况进行一下上述的这种处理
有关辅助节点的使用方法在上面链接的博客中讲过了,这里就不再详叙
dp[m][n - 1] 或dp[m - 1][n] = 1
即可。class Solution { public: int calculateMinimumHP(vector<vector<int>>& dungeon) { int m=dungeon.size(); int n=dungeon[0].size(); //建立dp表,以某个位置为开始建立状态转移方程 vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX)); dp[m][n-1]=1;//考虑边界问题 for(int i=m-1;i>=0;i--) { for(int j=n-1;j>=0;j--) { //填表 dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j]; dp[i][j]=max(1,dp[i][j]); } } //返回值 return dp[0][0]; } };
新人博主创作不易,如果感觉文章内容对你有所帮助的话不妨三连一下再走呗。你们的支持就是我更新的动力!!!
**(可莉请求你们三连支持一下博主!!!点击下方评论点赞收藏帮帮可莉吧)**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。