当前位置:   article > 正文

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解_inceptionresnet

inceptionresnet

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解


前言

GoogLeNet(Inception-ResNet)是由谷歌的Szegedy, Christian等人在《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning【AAAI-2017】》【论文地址】一文中提出的改进模型,受启发于ResNet【参考】在深度网络上较好的表现影响,论文将残差连接加入到Inception结构中形成2个Inception-ResNet版本的网络,它将残差连接取代原本Inception块中池化层部分,并将拼接变成了求和相加,提升了Inception的训练速度。

因为InceptionV4、Inception-Resnet-v1和Inception-Resnet-v2同出自一篇论文,大部分读者对InceptionV4存在误解,认为它是Inception模块与残差学习的结合,其实InceptionV4没有使用残差学习的思想,它基本延续了Inception v2/v3的结构,只有Inception-Resnet-v1和Inception-Resnet-v2才是Inception模块与残差学习的结合产物。


Inception-ResNet讲解

Inception-ResNet的核心思想是将Inception模块和ResNet模块进行融合,以利用它们各自的优点。Inception模块通过并行多个不同大小的卷积核来捕捉多尺度的特征,而ResNet模块通过残差连接解决了深层网络中的梯度消失和梯度爆炸问题,有助于更好地训练深层模型。Inception-ResNet使用了与InceptionV4【参考】类似的Inception模块,并在其中引入了ResNet的残差连接。这样,网络中的每个Inception模块都包含了两个分支:一个是常规的Inception结构,另一个是包含残差连接的Inception结构。这种设计使得模型可以更好地学习特征表示,并且在训练过程中可以更有效地传播梯度。

Inception-ResNet-V1

Inception-ResNet-v1:一种和InceptionV3【参考】具有相同计算损耗的结构。

  1. Stem结构: Inception-ResNet-V1的Stem结构类似于此前的InceptionV3网络中Inception结构组之前的网络层。

    所有卷积中没有标记为V表示填充方式为"SAME Padding",输入和输出维度一致;标记为V表示填充方式为"VALID Padding",输出维度视具体情况而定。

  2. Inception-resnet-A结构: InceptionV4网络中Inception-A结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。

    Inception-resnet结构残差连接代替了Inception中的池化层,并用残差连接相加操作取代了原Inception块中的拼接操作。

  3. Inception-resnet-B结构: InceptionV4网络中Inception-B结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。

  4. Inception-resnet-C结构: InceptionV4网络中Inception-C结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。

  5. Redution-A结构: 与InceptionV4网络中Redution-A结构一致,区别在于卷积核的个数。

    k和l表示卷积个数,不同网络结构的redution-A结构k和l是不同的。

  6. Redution-B结构:
    .

Inception-ResNet-V2

Inception-ResNet-v2:这是一种和InceptionV4具有相同计算损耗的结构,但是训练速度要比纯Inception-v4要快
Inception-ResNet-v2的整体框架和Inception-ResNet-v1的一致,除了Inception-ResNet-v2的stem结构与Inception V4的相同,其他的的结构Inception-ResNet-v2与Inception-ResNet-v1的类似,只不过卷积的个数Inception-ResNet-v2数量更多。

  1. Stem结构: Inception-ResNet-v2的stem结构与Inception V4的相同。
  2. Inception-resnet-A结构: InceptionV4网络中Inception-A结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。
  3. Inception-resnet-B结构: InceptionV4网络中Inception-B结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。
  4. Inception-resnet-C结构: InceptionV4网络中Inception-C结构的变体,1×1卷积的目的是为了保持主分支与shortcut分支的特征图形状保持完全一致。
  5. Redution-A结构: 与InceptionV4网络中Redution-A结构一致,区别在于卷积核的个数。

    k和l表示卷积个数,不同网络结构的redution-A结构k和l是不同的。

    1. Redution-B结构:

残差模块的缩放(Scaling of the Residuals)

如果单个网络层卷积核数量过多(超过1000),残差网络开始出现不稳定,网络会在训练过程早期便会开始失效—经过几万次训练后,平均池化层之前的层开始只输出0。降低学习率、增加额外的BN层都无法避免这种状况。因此在将shortcut分支加到当前残差块的输出之前,对残差块的输出进行放缩能够稳定训练

通常,将残差放缩因子定在0.1到0.3之间去缩放残差块输出。即使缩放并不是完全必须的,它似乎并不会影响最终的准确率,但是放缩能有益于训练的稳定性。

Inception-ResNet的总体模型结构

下图是原论文给出的关于 Inception-ResNet-V1模型结构的详细示意图:

下图是原论文给出的关于 Inception-ResNet-V2模型结构的详细示意图:

读者注意了,原始论文标注的 Inception-ResNet-V2通道数有一部分是错的,写代码时候对应不上。

两个版本的总体结构相同,具体的Stem、Inception块、Redution块则稍微不同。
Inception-ResNet-V1和 Inception-ResNet-V2在图像分类中分为两部分:backbone部分: 主要由 Inception-resnet模块、Stem模块和池化层(汇聚层)组成,分类器部分:由全连接层组成。


GoogLeNet(Inception-ResNet) Pytorch代码

Inception-ResNet-V1

卷积层组: 卷积层+BN层+激活函数

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

Stem模块: 卷积层组+池化层

# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):
    def __init__(self, in_channels):
        super(Stem, self).__init__()

        # conv3x3(32 stride2 valid)
        self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)
        # conv3*3(32 valid)
        self.conv2 = BasicConv2d(32, 32, kernel_size=3)
        # conv3*3(64)
        self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)

        # maxpool3*3(stride2 valid)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)

        # conv1*1(80)
        self.conv5 = BasicConv2d(64, 80, kernel_size=1)
        # conv3*3(192 valid)
        self.conv6 = BasicConv2d(80, 192, kernel_size=1)

        # conv3*3(256 stride2 valid)
        self.conv7 = BasicConv2d(192, 256, kernel_size=3, stride=2)

    def forward(self, x):
        x = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))
        x = self.conv7(self.conv6(self.conv5(x)))
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

Inception_ResNet-A模块: 卷积层组+池化层

# Inception_ResNet_A:BasicConv2d+MaxPool2d
class Inception_ResNet_A(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_A, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(32)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(32)+conv3*3(32)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, 1),
            BasicConv2d(ch3x3red, ch3x3, 3, stride=1, padding=1)
        )
        # conv1*1(32)+conv3*3(32)+conv3*3(32)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, 3, stride=1, padding=1),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, 3, stride=1, padding=1)
        )
        # conv1*1(256)
        self.conv = BasicConv2d(ch1x1+ch3x3+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        # 拼接
        x_res = torch.cat((x0, x1, x2), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

Inception_ResNet-B模块: 卷积层组+池化层

# Inception_ResNet_B:BasicConv2d+MaxPool2d
class Inception_ResNet_B(nn.Module):
    def __init__(self, in_channels, ch1x1, ch_red, ch_1, ch_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_B, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(128)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(128)+conv1*7(128)+conv1*7(128)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch_red, 1),
            BasicConv2d(ch_red, ch_1, (1, 7), stride=1, padding=(0, 3)),
            BasicConv2d(ch_1, ch_2, (7, 1), stride=1, padding=(3, 0))
        )
        # conv1*1(896)
        self.conv = BasicConv2d(ch1x1+ch_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

Inception_ResNet-C模块: 卷积层组+池化层

# Inception_ResNet_C:BasicConv2d+MaxPool2d
class Inception_ResNet_C(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext,  scale=1.0, activation=True):
        super(Inception_ResNet_C, self).__init__()
        # 缩减指数
        self.scale = scale
        # 是否激活
        self.activation = activation
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(192)+conv1*3(192)+conv3*1(192)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, (1, 3), stride=1, padding=(0, 1)),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, (3, 1), stride=1, padding=(1, 0))
        )
        # conv1*1(1792)
        self.conv = BasicConv2d(ch1x1+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        if self.activation:
            return self.relu(x + self.scale * x_res)
        return x + self.scale * x_res
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

redutionA模块: 卷积层组+池化层

# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):
    def __init__(self, in_channels, k, l, m, n):
        super(redutionA, self).__init__()
        # conv3*3(n stride2 valid)
        self.branch1 = nn.Sequential(
            BasicConv2d(in_channels, n, kernel_size=3, stride=2),
        )
        # conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, k, kernel_size=1),
            BasicConv2d(k, l, kernel_size=3, padding=1),
            BasicConv2d(l, m, kernel_size=3, stride=2)
        )
        # maxpool3*3(stride2 valid)
        self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        # 拼接
        outputs = [branch1, branch2, branch3]
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

redutionB模块: 卷积层组+池化层

# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_1, ch3x3_2, ch3x3_3, ch3x3_4):
        super(redutionB, self).__init__()
        # conv1*1(256)+conv3x3(384 stride2 valid)
        self.branch_0 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_1, 3, stride=2, padding=0)
        )
        # conv1*1(256)+conv3x3(256 stride2 valid)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_2, 3, stride=2, padding=0),
        )
        # conv1*1(256)+conv3x3(256)+conv3x3(256 stride2 valid)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_3, 3, stride=1, padding=1),
            BasicConv2d(ch3x3_3, ch3x3_4, 3, stride=2, padding=0)
        )
        # maxpool3*3(stride2 valid)
        self.branch_3 = nn.MaxPool2d(3, stride=2, padding=0)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        x3 = self.branch_3(x)
        return torch.cat((x0, x1, x2, x3), dim=1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

Inception-ResNet-V2

Inception-ResNet-V2除了Stem,其他模块在结构上与Inception-ResNet-V1一致。
卷积层组: 卷积层+BN层+激活函数

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

Stem模块: 卷积层组+池化层

# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):
    def __init__(self, in_channels):
        super(Stem, self).__init__()
        # conv3*3(32 stride2 valid)
        self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)
        # conv3*3(32 valid)
        self.conv2 = BasicConv2d(32, 32, kernel_size=3)
        # conv3*3(64)
        self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
        # maxpool3*3(stride2 valid) & conv3*3(96 stride2 valid)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)
        self.conv4 = BasicConv2d(64, 96, kernel_size=3, stride=2)

        # conv1*1(64)+conv3*3(96 valid)
        self.conv5_1_1 = BasicConv2d(160, 64, kernel_size=1)
        self.conv5_1_2 = BasicConv2d(64, 96, kernel_size=3)
        # conv1*1(64)+conv7*1(64)+conv1*7(64)+conv3*3(96 valid)
        self.conv5_2_1 = BasicConv2d(160, 64, kernel_size=1)
        self.conv5_2_2 = BasicConv2d(64, 64, kernel_size=(7, 1), padding=(3, 0))
        self.conv5_2_3 = BasicConv2d(64, 64, kernel_size=(1, 7), padding=(0, 3))
        self.conv5_2_4 = BasicConv2d(64, 96, kernel_size=3)

        # conv3*3(192 valid) & maxpool3*3(stride2 valid)
        self.conv6 = BasicConv2d(192, 192, kernel_size=3, stride=2)
        self.maxpool6 = nn.MaxPool2d(kernel_size=3, stride=2)

    def forward(self, x):
        x1_1 = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))
        x1_2 = self.conv4(self.conv3(self.conv2(self.conv1(x))))
        x1 = torch.cat([x1_1, x1_2], 1)

        x2_1 = self.conv5_1_2(self.conv5_1_1(x1))
        x2_2 = self.conv5_2_4(self.conv5_2_3(self.conv5_2_2(self.conv5_2_1(x1))))
        x2 = torch.cat([x2_1, x2_2], 1)

        x3_1 = self.conv6(x2)
        x3_2 = self.maxpool6(x2)
        x3 = torch.cat([x3_1, x3_2], 1)
        return x3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

Inception_ResNet-A模块: 卷积层组+池化层

# Inception_ResNet_A:BasicConv2d+MaxPool2d
class Inception_ResNet_A(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_A, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(32)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(32)+conv3*3(32)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, 1),
            BasicConv2d(ch3x3red, ch3x3, 3, stride=1, padding=1)
        )
        # conv1*1(32)+conv3*3(48)+conv3*3(64)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, 3, stride=1, padding=1),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, 3, stride=1, padding=1)
        )
        # conv1*1(384)
        self.conv = BasicConv2d(ch1x1+ch3x3+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        # 拼接
        x_res = torch.cat((x0, x1, x2), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

Inception_ResNet-B模块: 卷积层组+池化层

# Inception_ResNet_B:BasicConv2d+MaxPool2d
class Inception_ResNet_B(nn.Module):
    def __init__(self, in_channels, ch1x1, ch_red, ch_1, ch_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_B, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(128)+conv1*7(160)+conv1*7(192)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch_red, 1),
            BasicConv2d(ch_red, ch_1, (1, 7), stride=1, padding=(0, 3)),
            BasicConv2d(ch_1, ch_2, (7, 1), stride=1, padding=(3, 0))
        )
        # conv1*1(1154)
        self.conv = BasicConv2d(ch1x1+ch_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

Inception_ResNet-C模块: 卷积层组+池化层

# Inception_ResNet_C:BasicConv2d+MaxPool2d
class Inception_ResNet_C(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext,  scale=1.0, activation=True):
        super(Inception_ResNet_C, self).__init__()
        # 缩减指数
        self.scale = scale
        # 是否激活
        self.activation = activation
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(192)+conv1*3(224)+conv3*1(256)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, (1, 3), stride=1, padding=(0, 1)),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, (3, 1), stride=1, padding=(1, 0))
        )
        # conv1*1(2048)
        self.conv = BasicConv2d(ch1x1+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        if self.activation:
            return self.relu(x + self.scale * x_res)
        return x + self.scale * x_res
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

redutionA模块: 卷积层组+池化层

# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):
    def __init__(self, in_channels, k, l, m, n):
        super(redutionA, self).__init__()
        # conv3*3(n stride2 valid)
        self.branch1 = nn.Sequential(
            BasicConv2d(in_channels, n, kernel_size=3, stride=2),
        )
        # conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, k, kernel_size=1),
            BasicConv2d(k, l, kernel_size=3, padding=1),
            BasicConv2d(l, m, kernel_size=3, stride=2)
        )
        # maxpool3*3(stride2 valid)
        self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        # 拼接
        outputs = [branch1, branch2, branch3]
        return torch.cat(outputs, 1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

redutionB模块: 卷积层组+池化层

# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_1, ch3x3_2, ch3x3_3, ch3x3_4):
        super(redutionB, self).__init__()
        # conv1*1(256)+conv3x3(384 stride2 valid)
        self.branch_0 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_1, 3, stride=2, padding=0)
        )
        # conv1*1(256)+conv3x3(288 stride2 valid)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_2, 3, stride=2, padding=0),
        )
        # conv1*1(256)+conv3x3(288)+conv3x3(320 stride2 valid)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_3, 3, stride=1, padding=1),
            BasicConv2d(ch3x3_3, ch3x3_4, 3, stride=2, padding=0)
        )
        # maxpool3*3(stride2 valid)
        self.branch_3 = nn.MaxPool2d(3, stride=2, padding=0)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        x3 = self.branch_3(x)
        return torch.cat((x0, x1, x2, x3), dim=1)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

完整代码

Inception-ResNet的输入图像尺寸是299×299

Inception-ResNet-V1

import torch
import torch.nn as nn
from torchsummary import summary

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):
    def __init__(self, in_channels):
        super(Stem, self).__init__()

        # conv3x3(32 stride2 valid)
        self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)
        # conv3*3(32 valid)
        self.conv2 = BasicConv2d(32, 32, kernel_size=3)
        # conv3*3(64)
        self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)

        # maxpool3*3(stride2 valid)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)

        # conv1*1(80)
        self.conv5 = BasicConv2d(64, 80, kernel_size=1)
        # conv3*3(192 valid)
        self.conv6 = BasicConv2d(80, 192, kernel_size=1)

        # conv3*3(256 stride2 valid)
        self.conv7 = BasicConv2d(192, 256, kernel_size=3, stride=2)

    def forward(self, x):
        x = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))
        x = self.conv7(self.conv6(self.conv5(x)))
        return x

# Inception_ResNet_A:BasicConv2d+MaxPool2d
class Inception_ResNet_A(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_A, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(32)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(32)+conv3*3(32)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, 1),
            BasicConv2d(ch3x3red, ch3x3, 3, stride=1, padding=1)
        )
        # conv1*1(32)+conv3*3(32)+conv3*3(32)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, 3, stride=1, padding=1),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, 3, stride=1, padding=1)
        )
        # conv1*1(256)
        self.conv = BasicConv2d(ch1x1+ch3x3+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        # 拼接
        x_res = torch.cat((x0, x1, x2), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)

# Inception_ResNet_B:BasicConv2d+MaxPool2d
class Inception_ResNet_B(nn.Module):
    def __init__(self, in_channels, ch1x1, ch_red, ch_1, ch_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_B, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(128)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(128)+conv1*7(128)+conv1*7(128)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch_red, 1),
            BasicConv2d(ch_red, ch_1, (1, 7), stride=1, padding=(0, 3)),
            BasicConv2d(ch_1, ch_2, (7, 1), stride=1, padding=(3, 0))
        )
        # conv1*1(896)
        self.conv = BasicConv2d(ch1x1+ch_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)

# Inception_ResNet_C:BasicConv2d+MaxPool2d
class Inception_ResNet_C(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext,  scale=1.0, activation=True):
        super(Inception_ResNet_C, self).__init__()
        # 缩减指数
        self.scale = scale
        # 是否激活
        self.activation = activation
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(192)+conv1*3(192)+conv3*1(192)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, (1, 3), stride=1, padding=(0, 1)),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, (3, 1), stride=1, padding=(1, 0))
        )
        # conv1*1(1792)
        self.conv = BasicConv2d(ch1x1+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        if self.activation:
            return self.relu(x + self.scale * x_res)
        return x + self.scale * x_res

# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):
    def __init__(self, in_channels, k, l, m, n):
        super(redutionA, self).__init__()
        # conv3*3(n stride2 valid)
        self.branch1 = nn.Sequential(
            BasicConv2d(in_channels, n, kernel_size=3, stride=2),
        )
        # conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, k, kernel_size=1),
            BasicConv2d(k, l, kernel_size=3, padding=1),
            BasicConv2d(l, m, kernel_size=3, stride=2)
        )
        # maxpool3*3(stride2 valid)
        self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        # 拼接
        outputs = [branch1, branch2, branch3]
        return torch.cat(outputs, 1)

# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_1, ch3x3_2, ch3x3_3, ch3x3_4):
        super(redutionB, self).__init__()
        # conv1*1(256)+conv3x3(384 stride2 valid)
        self.branch_0 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_1, 3, stride=2, padding=0)
        )
        # conv1*1(256)+conv3x3(256 stride2 valid)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_2, 3, stride=2, padding=0),
        )
        # conv1*1(256)+conv3x3(256)+conv3x3(256 stride2 valid)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_3, 3, stride=1, padding=1),
            BasicConv2d(ch3x3_3, ch3x3_4, 3, stride=2, padding=0)
        )
        # maxpool3*3(stride2 valid)
        self.branch_3 = nn.MaxPool2d(3, stride=2, padding=0)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        x3 = self.branch_3(x)
        return torch.cat((x0, x1, x2, x3), dim=1)

class Inception_ResNetv1(nn.Module):
    def __init__(self, num_classes = 1000, k=192, l=192, m=256, n=384):
        super(Inception_ResNetv1, self).__init__()
        blocks = []
        blocks.append(Stem(3))
        for i in range(5):
            blocks.append(Inception_ResNet_A(256,32, 32, 32, 32, 32, 32, 256, 0.17))
        blocks.append(redutionA(256, k, l, m, n))
        for i in range(10):
            blocks.append(Inception_ResNet_B(896, 128, 128, 128, 128, 896, 0.10))
        blocks.append(redutionB(896,256, 384, 256, 256, 256))
        for i in range(4):
            blocks.append(Inception_ResNet_C(1792,192, 192, 192, 192, 1792, 0.20))
        blocks.append(Inception_ResNet_C(1792, 192, 192, 192, 192, 1792, activation=False))
        self.features = nn.Sequential(*blocks)
        self.conv = BasicConv2d(1792, 1536, 1)
        self.global_average_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.8)
        self.linear = nn.Linear(1536, num_classes)

    def forward(self, x):
        x = self.features(x)
        x = self.conv(x)
        x = self.global_average_pooling(x)
        x = x.view(x.size(0), -1)
        x = self.dropout(x)
        x = self.linear(x)
        return x

if __name__ == '__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = Inception_ResNetv1().to(device)
    summary(model, input_size=(3, 229, 229))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219

summary可以打印网络结构和参数,方便查看搭建好的网络结构。

Inception-ResNet-V2

import torch
import torch.nn as nn
from torchsummary import summary

# 卷积组: Conv2d+BN+ReLU
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

# Stem:BasicConv2d+MaxPool2d
class Stem(nn.Module):
    def __init__(self, in_channels):
        super(Stem, self).__init__()
        # conv3*3(32 stride2 valid)
        self.conv1 = BasicConv2d(in_channels, 32, kernel_size=3, stride=2)
        # conv3*3(32 valid)
        self.conv2 = BasicConv2d(32, 32, kernel_size=3)
        # conv3*3(64)
        self.conv3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
        # maxpool3*3(stride2 valid) & conv3*3(96 stride2 valid)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2)
        self.conv4 = BasicConv2d(64, 96, kernel_size=3, stride=2)

        # conv1*1(64)+conv3*3(96 valid)
        self.conv5_1_1 = BasicConv2d(160, 64, kernel_size=1)
        self.conv5_1_2 = BasicConv2d(64, 96, kernel_size=3)
        # conv1*1(64)+conv7*1(64)+conv1*7(64)+conv3*3(96 valid)
        self.conv5_2_1 = BasicConv2d(160, 64, kernel_size=1)
        self.conv5_2_2 = BasicConv2d(64, 64, kernel_size=(7, 1), padding=(3, 0))
        self.conv5_2_3 = BasicConv2d(64, 64, kernel_size=(1, 7), padding=(0, 3))
        self.conv5_2_4 = BasicConv2d(64, 96, kernel_size=3)

        # conv3*3(192 valid) & maxpool3*3(stride2 valid)
        self.conv6 = BasicConv2d(192, 192, kernel_size=3, stride=2)
        self.maxpool6 = nn.MaxPool2d(kernel_size=3, stride=2)

    def forward(self, x):
        x1_1 = self.maxpool4(self.conv3(self.conv2(self.conv1(x))))
        x1_2 = self.conv4(self.conv3(self.conv2(self.conv1(x))))
        x1 = torch.cat([x1_1, x1_2], 1)

        x2_1 = self.conv5_1_2(self.conv5_1_1(x1))
        x2_2 = self.conv5_2_4(self.conv5_2_3(self.conv5_2_2(self.conv5_2_1(x1))))
        x2 = torch.cat([x2_1, x2_2], 1)

        x3_1 = self.conv6(x2)
        x3_2 = self.maxpool6(x2)
        x3 = torch.cat([x3_1, x3_2], 1)
        return x3

# Inception_ResNet_A:BasicConv2d+MaxPool2d
class Inception_ResNet_A(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_A, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(32)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(32)+conv3*3(32)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, 1),
            BasicConv2d(ch3x3red, ch3x3, 3, stride=1, padding=1)
        )
        # conv1*1(32)+conv3*3(48)+conv3*3(64)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, 3, stride=1, padding=1),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, 3, stride=1, padding=1)
        )
        # conv1*1(384)
        self.conv = BasicConv2d(ch1x1+ch3x3+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        # 拼接
        x_res = torch.cat((x0, x1, x2), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)

# Inception_ResNet_B:BasicConv2d+MaxPool2d
class Inception_ResNet_B(nn.Module):
    def __init__(self, in_channels, ch1x1, ch_red, ch_1, ch_2, ch1x1ext, scale=1.0):
        super(Inception_ResNet_B, self).__init__()
        # 缩减指数
        self.scale = scale
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(128)+conv1*7(160)+conv1*7(192)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch_red, 1),
            BasicConv2d(ch_red, ch_1, (1, 7), stride=1, padding=(0, 3)),
            BasicConv2d(ch_1, ch_2, (7, 1), stride=1, padding=(3, 0))
        )
        # conv1*1(1154)
        self.conv = BasicConv2d(ch1x1+ch_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        return self.relu(x + self.scale * x_res)

# Inception_ResNet_C:BasicConv2d+MaxPool2d
class Inception_ResNet_C(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3redX2, ch3x3X2_1, ch3x3X2_2, ch1x1ext,  scale=1.0, activation=True):
        super(Inception_ResNet_C, self).__init__()
        # 缩减指数
        self.scale = scale
        # 是否激活
        self.activation = activation
        # conv1*1(192)
        self.branch_0 = BasicConv2d(in_channels, ch1x1, 1)
        # conv1*1(192)+conv1*3(224)+conv3*1(256)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3redX2, 1),
            BasicConv2d(ch3x3redX2, ch3x3X2_1, (1, 3), stride=1, padding=(0, 1)),
            BasicConv2d(ch3x3X2_1, ch3x3X2_2, (3, 1), stride=1, padding=(1, 0))
        )
        # conv1*1(2048)
        self.conv = BasicConv2d(ch1x1+ch3x3X2_2, ch1x1ext, 1)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        # 拼接
        x_res = torch.cat((x0, x1), dim=1)
        x_res = self.conv(x_res)
        if self.activation:
            return self.relu(x + self.scale * x_res)
        return x + self.scale * x_res

# redutionA:BasicConv2d+MaxPool2d
class redutionA(nn.Module):
    def __init__(self, in_channels, k, l, m, n):
        super(redutionA, self).__init__()
        # conv3*3(n stride2 valid)
        self.branch1 = nn.Sequential(
            BasicConv2d(in_channels, n, kernel_size=3, stride=2),
        )
        # conv1*1(k)+conv3*3(l)+conv3*3(m stride2 valid)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, k, kernel_size=1),
            BasicConv2d(k, l, kernel_size=3, padding=1),
            BasicConv2d(l, m, kernel_size=3, stride=2)
        )
        # maxpool3*3(stride2 valid)
        self.branch3 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=2))

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        # 拼接
        outputs = [branch1, branch2, branch3]
        return torch.cat(outputs, 1)

# redutionB:BasicConv2d+MaxPool2d
class redutionB(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3_1, ch3x3_2, ch3x3_3, ch3x3_4):
        super(redutionB, self).__init__()
        # conv1*1(256)+conv3x3(384 stride2 valid)
        self.branch_0 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_1, 3, stride=2, padding=0)
        )
        # conv1*1(256)+conv3x3(288 stride2 valid)
        self.branch_1 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_2, 3, stride=2, padding=0),
        )
        # conv1*1(256)+conv3x3(288)+conv3x3(320 stride2 valid)
        self.branch_2 = nn.Sequential(
            BasicConv2d(in_channels, ch1x1, 1),
            BasicConv2d(ch1x1, ch3x3_3, 3, stride=1, padding=1),
            BasicConv2d(ch3x3_3, ch3x3_4, 3, stride=2, padding=0)
        )
        # maxpool3*3(stride2 valid)
        self.branch_3 = nn.MaxPool2d(3, stride=2, padding=0)

    def forward(self, x):
        x0 = self.branch_0(x)
        x1 = self.branch_1(x)
        x2 = self.branch_2(x)
        x3 = self.branch_3(x)
        return torch.cat((x0, x1, x2, x3), dim=1)

class Inception_ResNetv2(nn.Module):
    def __init__(self, num_classes = 1000, k=256, l=256, m=384, n=384):
        super(Inception_ResNetv2, self).__init__()
        blocks = []
        blocks.append(Stem(3))
        for i in range(5):
            blocks.append(Inception_ResNet_A(384,32, 32, 32, 32, 48, 64, 384, 0.17))
        blocks.append(redutionA(384, k, l, m, n))
        for i in range(10):
            blocks.append(Inception_ResNet_B(1152, 192, 128, 160, 192, 1152, 0.10))
        blocks.append(redutionB(1152, 256, 384, 288, 288, 320))
        for i in range(4):
            blocks.append(Inception_ResNet_C(2144,192, 192, 224, 256, 2144, 0.20))
        blocks.append(Inception_ResNet_C(2144, 192, 192, 224, 256, 2144, activation=False))
        self.features = nn.Sequential(*blocks)
        self.conv = BasicConv2d(2144, 1536, 1)
        self.global_average_pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.8)
        self.linear = nn.Linear(1536, num_classes)

    def forward(self, x):
        x = self.features(x)
        x = self.conv(x)
        x = self.global_average_pooling(x)
        x = x.view(x.size(0), -1)
        x = self.dropout(x)
        x = self.linear(x)
        return x

if __name__ == '__main__':
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = Inception_ResNetv2().to(device)
    summary(model, input_size=(3, 229, 229))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232

summary可以打印网络结构和参数,方便查看搭建好的网络结构。


总结

尽可能简单、详细的介绍了Inception-ResNet将Inception和ResNet结合的作用和过程,讲解了Inception-ResNet模型的结构和pytorch代码。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/661191
推荐阅读
相关标签
  

闽ICP备14008679号