赞
踩
最近收到几个网友提供OpenCV中CLAHE的源代码的请求,在此直接将OpenCV4.54版本CLAHE.CPP的源码分享出来。
下载地址:https://sourceforge.net/projects/opencvlibrary/files/
有3.4.10–4.5.4的版本,但下载很慢,老猿费了很大的劲,大家可以考虑专门的下载工具下载。如果实在下不下来,请关注老猿Python的微信公号给老猿发消息。
/*M/// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, NVIDIA Corporation, all rights reserved. // Copyright (C) 2014, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the copyright holders or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencl_kernels_imgproc.hpp" // ---------------------------------------------------------------------- // CLAHE #ifdef HAVE_OPENCL namespace clahe { static bool calcLut(cv::InputArray _src, cv::OutputArray _dst, const int tilesX, const int tilesY, const cv::Size tileSize, const int clipLimit, const float lutScale) { cv::ocl::Kernel k("calcLut", cv::ocl::imgproc::clahe_oclsrc); if(k.empty()) return false; cv::UMat src = _src.getUMat(); _dst.create(tilesX * tilesY, 256, CV_8UC1); cv::UMat dst = _dst.getUMat(); int tile_size[2]; tile_size[0] = tileSize.width; tile_size[1] = tileSize.height; size_t localThreads[3] = { 32, 8, 1 }; size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 }; int idx = 0; idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src)); idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst)); idx = k.set(idx, tile_size); idx = k.set(idx, tilesX); idx = k.set(idx, clipLimit); k.set(idx, lutScale); return k.run(2, globalThreads, localThreads, false); } static bool transform(cv::InputArray _src, cv::OutputArray _dst, cv::InputArray _lut, const int tilesX, const int tilesY, const cv::Size & tileSize) { cv::ocl::Kernel k("transform", cv::ocl::imgproc::clahe_oclsrc); if(k.empty()) return false; int tile_size[2]; tile_size[0] = tileSize.width; tile_size[1] = tileSize.height; cv::UMat src = _src.getUMat(); _dst.create(src.size(), src.type()); cv::UMat dst = _dst.getUMat(); cv::UMat lut = _lut.getUMat(); size_t localThreads[3] = { 32, 8, 1 }; size_t globalThreads[3] = { (size_t)src.cols, (size_t)src.rows, 1 }; int idx = 0; idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src)); idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst)); idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(lut)); idx = k.set(idx, src.cols); idx = k.set(idx, src.rows); idx = k.set(idx, tile_size); idx = k.set(idx, tilesX); k.set(idx, tilesY); return k.run(2, globalThreads, localThreads, false); } } #endif namespace { template <class T, int histSize, int shift> class CLAHE_CalcLut_Body : public cv::ParallelLoopBody { public: CLAHE_CalcLut_Body(const cv::Mat& src, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& clipLimit, const float& lutScale) : src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), clipLimit_(clipLimit), lutScale_(lutScale) { } void operator ()(const cv::Range& range) const CV_OVERRIDE; private: cv::Mat src_; mutable cv::Mat lut_; cv::Size tileSize_; int tilesX_; int clipLimit_; float lutScale_; }; template <class T, int histSize, int shift> void CLAHE_CalcLut_Body<T,histSize,shift>::operator ()(const cv::Range& range) const { T* tileLut = lut_.ptr<T>(range.start); const size_t lut_step = lut_.step / sizeof(T); for (int k = range.start; k < range.end; ++k, tileLut += lut_step) { const int ty = k / tilesX_; const int tx = k % tilesX_; // retrieve tile submatrix cv::Rect tileROI; tileROI.x = tx * tileSize_.width; tileROI.y = ty * tileSize_.height; tileROI.width = tileSize_.width; tileROI.height = tileSize_.height; const cv::Mat tile = src_(tileROI); // calc histogram cv::AutoBuffer<int> _tileHist(histSize); int* tileHist = _tileHist.data(); std::fill(tileHist, tileHist + histSize, 0); int height = tileROI.height; const size_t sstep = src_.step / sizeof(T); for (const T* ptr = tile.ptr<T>(0); height--; ptr += sstep) { int x = 0; for (; x <= tileROI.width - 4; x += 4) { int t0 = ptr[x], t1 = ptr[x+1]; tileHist[t0 >> shift]++; tileHist[t1 >> shift]++; t0 = ptr[x+2]; t1 = ptr[x+3]; tileHist[t0 >> shift]++; tileHist[t1 >> shift]++; } for (; x < tileROI.width; ++x) tileHist[ptr[x] >> shift]++; } // clip histogram if (clipLimit_ > 0) { // how many pixels were clipped int clipped = 0; for (int i = 0; i < histSize; ++i) { if (tileHist[i] > clipLimit_) { clipped += tileHist[i] - clipLimit_; tileHist[i] = clipLimit_; } } // redistribute clipped pixels int redistBatch = clipped / histSize; int residual = clipped - redistBatch * histSize; for (int i = 0; i < histSize; ++i) tileHist[i] += redistBatch; if (residual != 0) { int residualStep = MAX(histSize / residual, 1); for (int i = 0; i < histSize && residual > 0; i += residualStep, residual--) tileHist[i]++; } } // calc Lut int sum = 0; for (int i = 0; i < histSize; ++i) { sum += tileHist[i]; tileLut[i] = cv::saturate_cast<T>(sum * lutScale_); } } } template <class T, int shift> class CLAHE_Interpolation_Body : public cv::ParallelLoopBody { public: CLAHE_Interpolation_Body(const cv::Mat& src, const cv::Mat& dst, const cv::Mat& lut, const cv::Size& tileSize, const int& tilesX, const int& tilesY) : src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY) { buf.allocate(src.cols << 2); ind1_p = buf.data(); ind2_p = ind1_p + src.cols; xa_p = (float *)(ind2_p + src.cols); xa1_p = xa_p + src.cols; int lut_step = static_cast<int>(lut_.step / sizeof(T)); float inv_tw = 1.0f / tileSize_.width; for (int x = 0; x < src.cols; ++x) { float txf = x * inv_tw - 0.5f; int tx1 = cvFloor(txf); int tx2 = tx1 + 1; xa_p[x] = txf - tx1; xa1_p[x] = 1.0f - xa_p[x]; tx1 = std::max(tx1, 0); tx2 = std::min(tx2, tilesX_ - 1); ind1_p[x] = tx1 * lut_step; ind2_p[x] = tx2 * lut_step; } } void operator ()(const cv::Range& range) const CV_OVERRIDE; private: cv::Mat src_; mutable cv::Mat dst_; cv::Mat lut_; cv::Size tileSize_; int tilesX_; int tilesY_; cv::AutoBuffer<int> buf; int * ind1_p, * ind2_p; float * xa_p, * xa1_p; }; template <class T, int shift> void CLAHE_Interpolation_Body<T, shift>::operator ()(const cv::Range& range) const { float inv_th = 1.0f / tileSize_.height; for (int y = range.start; y < range.end; ++y) { const T* srcRow = src_.ptr<T>(y); T* dstRow = dst_.ptr<T>(y); float tyf = y * inv_th - 0.5f; int ty1 = cvFloor(tyf); int ty2 = ty1 + 1; float ya = tyf - ty1, ya1 = 1.0f - ya; ty1 = std::max(ty1, 0); ty2 = std::min(ty2, tilesY_ - 1); const T* lutPlane1 = lut_.ptr<T>(ty1 * tilesX_); const T* lutPlane2 = lut_.ptr<T>(ty2 * tilesX_); for (int x = 0; x < src_.cols; ++x) { int srcVal = srcRow[x] >> shift; int ind1 = ind1_p[x] + srcVal; int ind2 = ind2_p[x] + srcVal; float res = (lutPlane1[ind1] * xa1_p[x] + lutPlane1[ind2] * xa_p[x]) * ya1 + (lutPlane2[ind1] * xa1_p[x] + lutPlane2[ind2] * xa_p[x]) * ya; dstRow[x] = cv::saturate_cast<T>(res) << shift; } } } class CLAHE_Impl CV_FINAL : public cv::CLAHE { public: CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8); void apply(cv::InputArray src, cv::OutputArray dst) CV_OVERRIDE; void setClipLimit(double clipLimit) CV_OVERRIDE; double getClipLimit() const CV_OVERRIDE; void setTilesGridSize(cv::Size tileGridSize) CV_OVERRIDE; cv::Size getTilesGridSize() const CV_OVERRIDE; void collectGarbage() CV_OVERRIDE; private: double clipLimit_; int tilesX_; int tilesY_; cv::Mat srcExt_; cv::Mat lut_; #ifdef HAVE_OPENCL cv::UMat usrcExt_; cv::UMat ulut_; #endif }; CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY) { } void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst) { CV_INSTRUMENT_REGION(); CV_Assert( _src.type() == CV_8UC1 || _src.type() == CV_16UC1 ); #ifdef HAVE_OPENCL bool useOpenCL = cv::ocl::isOpenCLActivated() && _src.isUMat() && _src.dims()<=2 && _src.type() == CV_8UC1; #endif int histSize = _src.type() == CV_8UC1 ? 256 : 65536; cv::Size tileSize; cv::_InputArray _srcForLut; if (_src.size().width % tilesX_ == 0 && _src.size().height % tilesY_ == 0) { tileSize = cv::Size(_src.size().width / tilesX_, _src.size().height / tilesY_); _srcForLut = _src; } else { #ifdef HAVE_OPENCL if(useOpenCL) { cv::copyMakeBorder(_src, usrcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101); tileSize = cv::Size(usrcExt_.size().width / tilesX_, usrcExt_.size().height / tilesY_); _srcForLut = usrcExt_; } else #endif { cv::copyMakeBorder(_src, srcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101); tileSize = cv::Size(srcExt_.size().width / tilesX_, srcExt_.size().height / tilesY_); _srcForLut = srcExt_; } } const int tileSizeTotal = tileSize.area(); const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal; int clipLimit = 0; if (clipLimit_ > 0.0) { clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize); clipLimit = std::max(clipLimit, 1); } #ifdef HAVE_OPENCL if (useOpenCL && clahe::calcLut(_srcForLut, ulut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale) ) if( clahe::transform(_src, _dst, ulut_, tilesX_, tilesY_, tileSize) ) { CV_IMPL_ADD(CV_IMPL_OCL); return; } #endif cv::Mat src = _src.getMat(); _dst.create( src.size(), src.type() ); cv::Mat dst = _dst.getMat(); cv::Mat srcForLut = _srcForLut.getMat(); lut_.create(tilesX_ * tilesY_, histSize, _src.type()); cv::Ptr<cv::ParallelLoopBody> calcLutBody; if (_src.type() == CV_8UC1) calcLutBody = cv::makePtr<CLAHE_CalcLut_Body<uchar, 256, 0> >(srcForLut, lut_, tileSize, tilesX_, clipLimit, lutScale); else if (_src.type() == CV_16UC1) calcLutBody = cv::makePtr<CLAHE_CalcLut_Body<ushort, 65536, 0> >(srcForLut, lut_, tileSize, tilesX_, clipLimit, lutScale); else CV_Error( CV_StsBadArg, "Unsupported type" ); cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), *calcLutBody); cv::Ptr<cv::ParallelLoopBody> interpolationBody; if (_src.type() == CV_8UC1) interpolationBody = cv::makePtr<CLAHE_Interpolation_Body<uchar, 0> >(src, dst, lut_, tileSize, tilesX_, tilesY_); else if (_src.type() == CV_16UC1) interpolationBody = cv::makePtr<CLAHE_Interpolation_Body<ushort, 0> >(src, dst, lut_, tileSize, tilesX_, tilesY_); cv::parallel_for_(cv::Range(0, src.rows), *interpolationBody); } void CLAHE_Impl::setClipLimit(double clipLimit) { clipLimit_ = clipLimit; } double CLAHE_Impl::getClipLimit() const { return clipLimit_; } void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize) { tilesX_ = tileGridSize.width; tilesY_ = tileGridSize.height; } cv::Size CLAHE_Impl::getTilesGridSize() const { return cv::Size(tilesX_, tilesY_); } void CLAHE_Impl::collectGarbage() { srcExt_.release(); lut_.release(); #ifdef HAVE_OPENCL usrcExt_.release(); ulut_.release(); #endif } } cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize) { return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height); }
如对文章内容存在疑问,可在博客评论区留言,或关注:老猿Python 微信公号发消息咨询。
更多图像直方图处理的内容请参考《《数字图像处理》第三章学习总结感悟2:直方图处理》的介绍。
更多图像处理的内容请参考专栏《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》、《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》及《图像处理基础知识》的介绍。
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。
对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。
如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。