当前位置:   article > 正文

OpenAI - tiktoken ⏳ | fast BPE tokeniser

tiktoken


关于 ⏳ tiktoken

tiktoken is a fast BPE tokeniser for use with OpenAI’s models.
初看这个名字,以为是跟 tiktok 相关,没想到是 openai 下面的,这取名还真是有趣呢。


性能表现

tiktoken 比其他开源 tokeniser 快 3-6 倍
基于 1GB 文本进行测试,使用 GPT-2 tokeniser,使用 GPT2TokenizerFast from tokenizers==0.13.2, transformers==4.24.0 and tiktoken==0.2.0

在这里插入图片描述


安装

pip install tiktoken 
  • 1

tiktoken 如何计算 token

给定一个文本字符:"tiktoken is great!",和一个 encoding,比如 "cl100k_base"
一个 tokenizer 可以讲文本字符串分割成一系列 tokens,如: ["t", "ik", "token", " is", " great", "!"]

GPT 模型使用这种类型的 token。
知道文本字符串中有多少令牌,可以告诉你(a)字符串是否太长,文本模型无法处理,以及(b)OpenAI API调用的成本(因为使用是按令牌定价的)。


Encodings

编码指定如何将文本转换为标记。不同的模型使用不同的编码。

OpenAI models 使用 tiktoken 支持下面三种编码:

Encoding nameOpenAI models
cl100k_basegpt-4, gpt-3.5-turbo, text-embedding-ada-002
p50k_baseCodex models, text-davinci-002, text-davinci-003
r50k_base (or gpt2)GPT-3 models like davinci

您可以获取一个模型的编码 ,使用 tiktoken.encoding_for_model() 如下:

encoding = tiktoken.encoding_for_model('gpt-3.5-turbo')
  • 1

注意,p50k_baser50k_base 基本类似,对于非代码应用程序,它们通常会给出相同的令牌。


Tokenizer libraries 对不同编程语言的支持

对于 cl100k_basep50k_base encodings:


对于 r50k_base (gpt2) encodings, tokenizers are available in many languages.

(OpenAI不对第三方库进行背书或保证。)


How strings are typically tokenized

In English, tokens commonly range in length from one character to one word (e.g., "t" or " great"), though in some languages tokens can be shorter than one character or longer than one word. Spaces are usually grouped with the starts of words (e.g., " is" instead of "is " or " "+"is"). You can quickly check how a string is tokenized at the OpenAI Tokenizer.

在英语中,tokens的长度通常从一个字符到一个单词(例如,tgreat ),尽管在一些语言中,tokens 可以短于一个字符或长于一个单词。
空格通常以单词的开头分组(例如, is 而不是 is + is
您可以在[OpenAI Tokenizer]快速检查字符串是如何tokenize的。

OpenAI Tokenizer : https://beta.openai.com/tokenizer


在这里插入图片描述


使用

编解码

import tiktoken
  • 1
# 使用名字加载 encoding
# 第一次运行时,可能需要连接互联网来下载;下一次不需要联网
encoding = tiktoken.get_encoding("cl100k_base")
 

# 对于给定的模型名,自动加载正确的 encoding 
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")


# 将文本转化为 tokens 列表
encoding.encode("tiktoken is great!")
# [83, 1609, 5963, 374, 2294, 0]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
# 计算 encode 返回列表的长度
def num_tokens_from_string(string: str, encoding_name: str) -> int:
    """Returns the number of tokens in a text string."""
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(string))
    return num_tokens
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
num_tokens_from_string("tiktoken is great!", "cl100k_base")  # 6
  • 1

# 将 tokens 转化为 文本
encoding.decode([83, 1609, 5963, 374, 2294, 0])
# 'tiktoken is great!'
  • 1
  • 2
  • 3

警告:尽管 .decode() 可以应用于单个令牌,但要注意,对于不在utf-8边界上的令牌,它可能会有损耗。
对于单个 tokens,.decode_single_token_bytes() 方法安全地将单个整数令牌转换为它所代表的字节。

[encoding.decode_single_token_bytes(token) for token in [83, 1609, 5963, 374, 2294, 0]]
# [b't', b'ik', b'token', b' is', b' great', b'!']
  • 1
  • 2

(字符串前面的 b 表示字符串是字节字符串。)


比较 encodings

不同的编码在拆分单词、组空格和处理非英语字符的方式上各不相同。使用上面的方法,我们可以比较几个示例字符串的不同编码。

def compare_encodings(example_string: str) -> None:
    """Prints a comparison of three string encodings."""
    # print the example string
    print(f'\nExample string: "{example_string}"')
    # for each encoding, print the # of tokens, the token integers, and the token bytes
    for encoding_name in ["gpt2", "p50k_base", "cl100k_base"]:
        encoding = tiktoken.get_encoding(encoding_name)
        token_integers = encoding.encode(example_string)
        num_tokens = len(token_integers)
        token_bytes = [encoding.decode_single_token_bytes(token) for token in token_integers]
        print()
        print(f"{encoding_name}: {num_tokens} tokens")
        print(f"token integers: {token_integers}")
        print(f"token bytes: {token_bytes}")
        

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

compare_encodings("antidisestablishmentarianism")
  • 1
Example string: "antidisestablishmentarianism"

gpt2: 5 tokens
token integers: [415, 29207, 44390, 3699, 1042]
token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']

p50k_base: 5 tokens
token integers: [415, 29207, 44390, 3699, 1042]
token bytes: [b'ant', b'idis', b'establishment', b'arian', b'ism']

cl100k_base: 6 tokens
token integers: [519, 85342, 34500, 479, 8997, 2191]
token bytes: [b'ant', b'idis', b'establish', b'ment', b'arian', b'ism']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

compare_encodings("2 + 2 = 4")
  • 1
Example string: "2 + 2 = 4"

gpt2: 5 tokens
token integers: [17, 1343, 362, 796, 604]
token bytes: [b'2', b' +', b' 2', b' =', b' 4']

p50k_base: 5 tokens
token integers: [17, 1343, 362, 796, 604]
token bytes: [b'2', b' +', b' 2', b' =', b' 4']

cl100k_base: 7 tokens
token integers: [17, 489, 220, 17, 284, 220, 19]
token bytes: [b'2', b' +', b' ', b'2', b' =', b' ', b'4']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

compare_encodings("お誕生日おめでとう")
  • 1
Example string: "お誕生日おめでとう"

gpt2: 14 tokens
token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]
token bytes: [b'\xe3\x81', b'\x8a', b'\xe8\xaa', b'\x95', b'\xe7\x94\x9f', b'\xe6\x97', b'\xa5', b'\xe3\x81', b'\x8a', b'\xe3\x82', b'\x81', b'\xe3\x81\xa7', b'\xe3\x81\xa8', b'\xe3\x81\x86']

p50k_base: 14 tokens
token integers: [2515, 232, 45739, 243, 37955, 33768, 98, 2515, 232, 1792, 223, 30640, 30201, 29557]
token bytes: [b'\xe3\x81', b'\x8a', b'\xe8\xaa', b'\x95', b'\xe7\x94\x9f', b'\xe6\x97', b'\xa5', b'\xe3\x81', b'\x8a', b'\xe3\x82', b'\x81', b'\xe3\x81\xa7', b'\xe3\x81\xa8', b'\xe3\x81\x86']

cl100k_base: 9 tokens
token integers: [33334, 45918, 243, 21990, 9080, 33334, 62004, 16556, 78699]
token bytes: [b'\xe3\x81\x8a', b'\xe8\xaa', b'\x95', b'\xe7\x94\x9f', b'\xe6\x97\xa5', b'\xe3\x81\x8a', b'\xe3\x82\x81', b'\xe3\x81\xa7', b'\xe3\x81\xa8\xe3\x81\x86']
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

计算chat API调用的tokens

ChatGPT models like gpt-3.5-turbo and gpt-4 use tokens in the same way as older completions models, but because of their message-based formatting, it’s more difficult to count how many tokens will be used by a conversation.

Below is an example function for counting tokens for messages passed to gpt-3.5-turbo-0301 or gpt-4-0314.

Note that the exact way that tokens are counted from messages may change from model to model. Consider the counts from the function below an estimate, not a timeless guarantee.

gpt-3.5-turbogpt-4 这样的ChatGPT模型使用tokens 的方式与旧的完成模型相同,但由于它们基于消息的格式,很难计算会话将使用多少tokens。
下面是一个示例函数,用于对传递到 gpt-3.5-turbo-0301gpt-4-0314 的消息的tokens进行计数。
请注意,从消息中计算tokens的确切方式可能会因模型而异。将函数中的计数视为一个估计值,而不是一个永恒的保证。


def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
    """Returns the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model == "gpt-3.5-turbo":
        print("Warning: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
        return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
    elif model == "gpt-4":
        print("Warning: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
        return num_tokens_from_messages(messages, model="gpt-4-0314")
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif model == "gpt-4-0314":
        tokens_per_message = 3
        tokens_per_name = 1
    else:
        raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

# let's verify the function above matches the OpenAI API response

import openai

example_messages = [
    {
        "role": "system",
        "content": "You are a helpful, pattern-following assistant that translates corporate jargon into plain English.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "New synergies will help drive top-line growth.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Things working well together will increase revenue.",
    },
    {
        "role": "system",
        "name": "example_user",
        "content": "Let's circle back when we have more bandwidth to touch base on opportunities for increased leverage.",
    },
    {
        "role": "system",
        "name": "example_assistant",
        "content": "Let's talk later when we're less busy about how to do better.",
    },
    {
        "role": "user",
        "content": "This late pivot means we don't have time to boil the ocean for the client deliverable.",
    },
]

for model in ["gpt-3.5-turbo-0301", "gpt-4-0314"]:
    print(model)
    # example token count from the function defined above
    print(f"{num_tokens_from_messages(example_messages, model)} prompt tokens counted by num_tokens_from_messages().")
    # example token count from the OpenAI API
    response = openai.ChatCompletion.create(
        model=model,
        messages=example_messages,
        temperature=0,
        max_tokens=1  # we're only counting input tokens here, so let's not waste tokens on the output
    )
    print(f'{response["usage"]["prompt_tokens"]} prompt tokens counted by the OpenAI API.')
    print()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

gpt-3.5-turbo-0301
127 prompt tokens counted by num_tokens_from_messages().
127 prompt tokens counted by the OpenAI API.

gpt-4-0314
129 prompt tokens counted by num_tokens_from_messages().
129 prompt tokens counted by the OpenAI API.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

拓展 tiktoken

您可能希望扩展 tiktoken 以支持新的编码。有两种方法可以做到这一点。
按照您想要的方式创建Encoding对象,然后简单地传递它。

方式一:

cl100k_base = tiktoken.get_encoding("cl100k_base")

# In production, load the arguments directly instead of accessing private attributes
# See openai_public.py for examples of arguments for specific encodings
enc = tiktoken.Encoding(
    # If you're changing the set of special tokens, make sure to use a different name
    # It should be clear from the name what behaviour to expect.
    name="cl100k_im",
    pat_str=cl100k_base._pat_str,
    mergeable_ranks=cl100k_base._mergeable_ranks,
    special_tokens={
        **cl100k_base._special_tokens,
        "<|im_start|>": 100264,
        "<|im_end|>": 100265,
    }
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

方式二:
使用 tiktoken_ext 插件机制 向tiktoken注册Encoding对象。
只有当您需要 tiktoken.get_encoding 来查找您的编码时,这才有用,否则更适合上面方式1。
要做到这一点,您需要在 tiktoken_ext 下创建一个命名空间包。
这样布局你的项目,确保省略 tiktoken_ext/__init__.py文件:

my_tiktoken_extension
├── tiktoken_ext
│   └── my_encodings.py
└── setup.py
  • 1
  • 2
  • 3
  • 4

my_encodings.py 应该是一个包含名为 ENCODING_CONSTRUCTORS 的变量的模块。
这是一个从编码名称到函数的字典,该函数不接受参数,并返回可以传递给 tiktoken.encoding 的参数来构造该编码。
例如,请参阅 tiktoken_ext/openai_public.py。有关详细信息,请参阅 tiktoken/registry.py
你的setup.py 应该是这样的:

from setuptools import setup, find_namespace_packages

setup(
    name="my_tiktoken_extension",
    packages=find_namespace_packages(include=['tiktoken_ext*']),
    install_requires=["tiktoken"],
    ...
)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

然后简单地执行 pip install ./my_tiktoken_extension,您应该能够使用自定义编码!请确保不要使用可编辑安装。


2023-03-31(五)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/345888
推荐阅读
相关标签
  

闽ICP备14008679号