赞
踩
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。
求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。
当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。
对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。
如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。
分治模式中,我们递归地求解一个问题,在每层递归中应用如下三个步骤:
当子问题足够大,需要递归求解时,我们称之为递归情况(recursive case)。当子问题变得足够小,不再需要递归时,我们说递归已经”触底“,进入了基本情况(base case)。有时,除了与原问题形式完全一样的规模更小的子问题外,还需要求解与原问题不完全一样的子问题。我们将这些子问题的求解看做合并步骤的一部分。
利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而二分法,由于其划分的简单和均匀的特点,是经常采用的一种有效的方法,例如二分法检索。
运用分治策略解决的问题一般来说具有以下特点:
原问题可以分解为多个子问题
这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。
原问题在分解过程中,递归地求解子问题
由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。
在求解并得到各个子问题的解后
应能够采用某种方式、方法合并或构造出原问题的解。
不难发现,在分治策略中,由于子问题与原问题在结构和解法上的相似性,用分治方法解决的问题,大都采用了递归的形式。
在各种排序方法中,如归并排序、堆排序、快速排序等,都存在有分治的思想。
分治算法的时间复杂度分析我们可以用递推公式和递归树。
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
T(n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当 mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。
由此可求得起时间复杂度为 O(nlogn).
(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
二分搜索是分治的一个实例,只不过二分搜索有着自己的特殊性
序列有序
结果为一个值
正常二分将一个完整的区间分成两个区间,两个区间本应单独找值然后确认结果,但是通过有序的区间可以直接确定结果在那个区间,所以分的两个区间只需要计算其中一个区间,然后继续进行一直到结束。实现方式有递归和非递归,但是非递归用的更多一些:
public int searchInsert(int[] nums, int target) { if(nums[0]>=target)return 0;//剪枝 if(nums[nums.length-1]==target)return nums.length-1;//剪枝 if(nums[nums.length-1]<target)return nums.length; int left=0,right=nums.length-1; while (left<right) { int mid=(left+right)/2; if(nums[mid]==target) return mid; else if (nums[mid]>target) { right=mid; } else { left=mid+1; } } return left; }
快排也是分治的一个实例,快排每一趟会选定一个数,将比这个数小的放左面,比这个数大的放右面,然后递归分治求解两个子区间,当然快排因为在分的时候就做了很多工作,当全部分到最底层的时候这个序列的值就是排序完的值。这是一种分而治之的体现。
public void quicksort(int [] a,int left,int right) { int low=left; int high=right; //下面两句的顺序一定不能混,否则会产生数组越界!!!very important!!! if(low>high)//作为判断是否截止条件 return; int k=a[low];//额外空间k,取最左侧的一个作为衡量,最后要求左侧都比它小,右侧都比它大。 while(low<high)//这一轮要求把左侧小于a[low],右侧大于a[low]。 { while(low<high&&a[high]>=k)//右侧找到第一个小于k的停止 { high--; } //这样就找到第一个比它小的了 a[low]=a[high];//放到low位置 while(low<high&&a[low]<=k)//在low往右找到第一个大于k的,放到右侧a[high]位置 { low++; } a[high]=a[low]; } a[low]=k;//赋值然后左右递归分治求之 quicksort(a, left, low-1); quicksort(a, low+1, right); }
最大子序列和的问题我们可以使用动态规划的解法,但是也可以使用分治算法来解决问题,但是最大子序列和在合并的时候并不是简单的合并,因为子序列和涉及到一个长度的问题,所以正确结果不一定全在最左侧或者最右侧,而可能出现结果的区域为:
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
public int maxSubArray(int[] nums) { int max=maxsub(nums,0,nums.length-1); return max; } int maxsub(int nums[],int left,int right) { if(left==right) return nums[left]; int mid=(left+right)/2; int leftmax=maxsub(nums,left,mid);//左侧最大 int rightmax=maxsub(nums,mid+1,right);//右侧最大 int midleft=nums[mid];//中间往左 int midright=nums[mid+1];//中间往右 int team=0; for(int i=mid;i>=left;i--) { team+=nums[i]; if(team>midleft) midleft=team; } team=0; for(int i=mid+1;i<=right;i++) { team+=nums[i]; if(team>midright) midright=team; } int max=midleft+midright;//中间的最大值 if(max<leftmax) max=leftmax; if(max<rightmax) max=rightmax; return max; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。