当前位置:   article > 正文

分治算法详解_分治法的迭代法求解

分治法的迭代法求解

分治算法介绍

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。

求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

基本原理

当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。

对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。

如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。

分治模式中,我们递归地求解一个问题,在每层递归中应用如下三个步骤:

  • 分解(Divide)步骤将问题划分为一些子问题,子问题的形式与原问题一样,只是规模更小。
  • 解决(Conquer)步骤递归地求解出子问题。如果子问题规模足够小,则停止递归,直接求解。
  • 合并(Combine)步骤将子问题的解合并为原问题的解。

当子问题足够大,需要递归求解时,我们称之为递归情况(recursive case)。当子问题变得足够小,不再需要递归时,我们说递归已经”触底“,进入了基本情况(base case)。有时,除了与原问题形式完全一样的规模更小的子问题外,还需要求解与原问题不完全一样的子问题。我们将这些子问题的求解看做合并步骤的一部分。

利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而二分法,由于其划分的简单和均匀的特点,是经常采用的一种有效的方法,例如二分法检索。

应用场景

运用分治策略解决的问题一般来说具有以下特点:

  1. 原问题可以分解为多个子问题

    这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。

  2. 原问题在分解过程中,递归地求解子问题

    由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。

  3. 在求解并得到各个子问题的解后

    应能够采用某种方式、方法合并或构造出原问题的解。

不难发现,在分治策略中,由于子问题与原问题在结构和解法上的相似性,用分治方法解决的问题,大都采用了递归的形式。

在各种排序方法中,如归并排序、堆排序、快速排序等,都存在有分治的思想。

分治算法的时间复杂度

分治算法的时间复杂度分析我们可以用递推公式和递归树。

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

T(n)= k T(n/m)+f(n)

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当 mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

由此可求得起时间复杂度为 O(nlogn).

经典问题

(1)二分搜索

(2)大整数乘法

(3)Strassen矩阵乘法

(4)棋盘覆盖

(5)合并排序

(6)快速排序

(7)线性时间选择

(8)最接近点对问题

(9)循环赛日程表

(10)汉诺塔

分治算法实战

二分搜索

二分搜索是分治的一个实例,只不过二分搜索有着自己的特殊性

序列有序
结果为一个值
正常二分将一个完整的区间分成两个区间,两个区间本应单独找值然后确认结果,但是通过有序的区间可以直接确定结果在那个区间,所以分的两个区间只需要计算其中一个区间,然后继续进行一直到结束。实现方式有递归和非递归,但是非递归用的更多一些:

public int searchInsert(int[] nums, int target) {
  if(nums[0]>=target)return 0;//剪枝
  if(nums[nums.length-1]==target)return nums.length-1;//剪枝
  if(nums[nums.length-1]<target)return nums.length;
  int left=0,right=nums.length-1;
  while (left<right) {
    int mid=(left+right)/2;
    if(nums[mid]==target)
      return mid;
    else if (nums[mid]>target) {
      right=mid;
    }
    else {
      left=mid+1;
    }
  }
  return left;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
快速排序

快排也是分治的一个实例,快排每一趟会选定一个数,将比这个数小的放左面,比这个数大的放右面,然后递归分治求解两个子区间,当然快排因为在分的时候就做了很多工作,当全部分到最底层的时候这个序列的值就是排序完的值。这是一种分而治之的体现。

public void quicksort(int [] a,int left,int right)
{
  int low=left;
  int high=right;
  //下面两句的顺序一定不能混,否则会产生数组越界!!!very important!!!
  if(low>high)//作为判断是否截止条件
    return;
  int k=a[low];//额外空间k,取最左侧的一个作为衡量,最后要求左侧都比它小,右侧都比它大。
  while(low<high)//这一轮要求把左侧小于a[low],右侧大于a[low]。
  {
    while(low<high&&a[high]>=k)//右侧找到第一个小于k的停止
    {
      high--;
    }
    //这样就找到第一个比它小的了
    a[low]=a[high];//放到low位置
    while(low<high&&a[low]<=k)//在low往右找到第一个大于k的,放到右侧a[high]位置
    {
      low++;
    }
    a[high]=a[low];			
  }
  a[low]=k;//赋值然后左右递归分治求之
  quicksort(a, left, low-1);
  quicksort(a, low+1, right);		
}


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
最大子序列和

最大子序列和的问题我们可以使用动态规划的解法,但是也可以使用分治算法来解决问题,但是最大子序列和在合并的时候并不是简单的合并,因为子序列和涉及到一个长度的问题,所以正确结果不一定全在最左侧或者最右侧,而可能出现结果的区域为:

  • 完全在中间的左侧
  • 完全在中间的右侧
  • 包含中间左右两个节点的一个序列

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

public int maxSubArray(int[] nums) {
    int max=maxsub(nums,0,nums.length-1);
    return max;
}
int maxsub(int nums[],int left,int right)
{
    if(left==right)
        return  nums[left];
    int mid=(left+right)/2;
    int leftmax=maxsub(nums,left,mid);//左侧最大
    int rightmax=maxsub(nums,mid+1,right);//右侧最大

    int midleft=nums[mid];//中间往左
    int midright=nums[mid+1];//中间往右
    int team=0;
    for(int i=mid;i>=left;i--)
    {
        team+=nums[i];
        if(team>midleft)
            midleft=team;
    }
    team=0;
    for(int i=mid+1;i<=right;i++)
    {
        team+=nums[i];
        if(team>midright)
            midright=team;
    }
    int max=midleft+midright;//中间的最大值
    if(max<leftmax)
        max=leftmax;
    if(max<rightmax)
        max=rightmax;
    return  max;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/592779
推荐阅读
相关标签
  

闽ICP备14008679号