赞
踩
今天的主角是 Transformer
。
Transformer
可以做很多有趣而又有意义的事情。
比如 OpenAI
的 DALL·E
,可以魔法一般地按照自然语言文字描述直接生成对应图片!
输入文本:鳄梨形状的扶手椅。
AI 生成的图像:
两者都是多模态的应用,这也是各大巨头的跟进方向,可谓大势所趋。
Transformer
最初主要应用于一些自然语言处理场景,比如翻译、文本分类、写小说、写歌等。
随着技术的发展,Transformer
开始征战视觉领域,分类、检测等任务均不在话下,逐渐走上了多模态的道路。
Transformer
近两年非常火爆,内容也很多,要想讲清楚,还涉及一些基于该结构的预训练模型,例如著名的 BERT
,GPT
,以及刚出的 DALL·E
等。
它们都是基于 Transformer
的上层应用,因为 Transformer
很难训练,巨头们就肩负起了造福大众的使命,开源了各种好用的预训练模型。
我们都是站在巨人肩膀上学习,用开源的预训练模型在一些特定的应用场景进行迁移学习。
篇幅有限,本文先讲解 Transformer
的基础原理,希望每个人都可以看懂。
后面我会继续写 BERT
、GPT
等内容,更新可能慢一些,但是跟着学,绝对都能有所收获。
还是那句话:如果你喜欢这个 AI 算法系列教程,一定要让我知道,转发在看支持,更文更有动力!
Transformer
是 Google
在 2017
年提出的用于机器翻译的模型。
Transformer
的内部,在本质上是一个 Encoder-Decoder
的结构,即 编码器-解码器
。
Transformer
中抛弃了传统的 CNN
和 RNN
,整个网络结构完全由 Attention
机制组成,并且采用了 6
层 Encoder-Decoder
结构。
显然,Transformer
主要分为两大部分,分别是编码器和解码器。
整个 Transformer
是由 6
个这样的结构组成,为了方便理解,我们只看其中一个Encoder-Decoder
结构。
以一个简单的例子进行说明:
Why do we work?
,我们为什么工作?
左侧红框是编码器,右侧红框是解码器,
编码器负责把自然语言序列映射成为隐藏层(上图第2步),即含有自然语言序列的数学表达。
解码器把隐藏层再映射为自然语言序列,从而使我们可以解决各种问题,如情感分析、机器翻译、摘要生成、语义关系抽取等。
简单说下,上图每一步都做了什么:
输入自然语言序列到编码器: Why do we work?(为什么要工作);
编码器输出的隐藏层,再输入到解码器;
输入 <声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。