赞
踩
Token Embeddings 是词嵌入张量, 第一个单词是CLS标志, 可以用于之后的分类任务.
Segment Embeddings 是句子分段嵌入张量, 是为了服务后续的两个句子为输入的预训练任务.
Position Embeddings 是位置编码张量, 此处注意和传统的Transformer不同, 不是三角函数计算的固定位置编码, 而是通过学习得出来的.
整个Embedding模块的输出张量就是这3个张量的直接加和结果.
- 对于不同的任务, 微调都集中在预微调模块, 几种重要的NLP微调任务架构图展示如下
- 从上图中可以发现, 在面对特定任务时, 只需要对预微调层进行微调, 就可以利用Transformer强大的注意力机制来模拟很多下游任务, 并得到SOTA的结果. (句子对关系判断, 单文本主题分类, 问答任务(QA), 单句贴标签(NER))
- 若干可选的超参数建议如下:
Batch size: 16, 32
Learning rate (Adam): 5e-5, 3e-5, 2e-5
Epochs: 3, 4
任务一: Masked LM (带mask的语言模型训练)
关于传统的语言模型训练, 都是采用left-to-right, 或者left-to-right + right-to-left结合的方式, 但这种单向方式或者拼接的方式提取特征的能力有限. 为此BERT提出一个深度双向表达模型(deep bidirectional representation). 即采用MASK任务来训练模型.
1: 在原始训练文本中, 随机的抽取15%的token作为参与MASK任务的对象.
2: 在这些被选中的token中, 数据生成器并不是把它们全部变成[MASK], 而是有下列3种情况.
3: 模型在训练的过程中, 并不知道它将要预测哪些单词? 哪些单词是原始的样子? 哪些单词被遮掩成了[MASK]? 哪些单词被替换成了其他单词? 正是在这样一种高度不确定的情况下, 反倒逼着模型快速学习该token的分布式上下文的语义, 尽最大努力学习原始语言说话的样子. 同时因为原始文本中只有15%的token参与了MASK操作, 并不会破坏原语言的表达能力和语言规则.
任务二: Next Sentence Prediction (下一句话预测任务)
在NLP中有一类重要的问题比如QA(Quention-Answer), NLI(Natural Language Inference), 需要模型能够很好的理解两个句子之间的关系, 从而需要在模型的训练中引入对应的任务. 在BERT中引入的就是Next Sentence Prediction任务. 采用的方式是输入句子对(A, B), 模型来预测句子B是不是句子A的真实的下一句话.
1: 所有参与任务训练的语句都被选中作为句子A.
2: 在任务二中, BERT模型可以在测试集上取得97%-98%的准确率.
学习了什么是BERT.
学习了BERT的结构.
学习了BERT的两大预训练任务.
- 首先来看self-attention的计算规则图:
- 上述attention可以被描述为将query和key-value键值对的一组集合映射到输出, 输出被计算为values的加权和, 其中分配给每个value的权重由query与对应key的相似性函数计算得来. 这种attention的形式被称为Scaled Dot-Product Attention, 对应的数学公式形式如下:
- 所谓的多头self-attention层, 则是先将Q, K, V经过参数矩阵进行映射, 再做self-attention, 最后将结果拼接起来送入一个全连接层即可.
- 上述的多头self-attention, 对应的数学公式形式如下:
- 多头self-attention层的作用: 实验结果表明, Multi-head可以在更细致的层面上提取不同head的特征, 总体计算量和单一head相同的情况下, 提取特征的效果更佳.
前馈全连接层模块
- 注意: 原版论文中的前馈全连接层, 输入和输出的维度均为d_model = 512, 层内的连接维度d_ff = 2048, 均采用4倍的大小关系.
- 前馈全连接层的作用: 单纯的多头注意力机制并不足以提取到理想的特征, 因此增加全连接层来提升网络的能力.
Encoder模块
2: Decoder模块
3: Add & Norm模块
4: 位置编码器Positional Encoding
1: 在Transformer结构中的Decoder模块的输入, 区分于不同的Block, 最底层的Block输入有其特殊的地方. 第二层到第六层的输入一致, 都是上一层的输出和Encoder的输出.
2: 最底层的Block在训练阶段, 每一个time step的输入是上一个time step的输入加上真实标签序列向后移一位. 具体来看, 就是每一个time step的输入序列会越来越长, 不断的将之前的输入融合进来.
3: 最底层的Block在训练阶段, 真实的代码实现中, 采用的是MASK机制来模拟输入序列不断添加的过程.
4: 最底层的Block在预测阶段, 每一个time step的输入是从time step=0开始, 一直到上一个time step的预测值的累积拼接张量. 具体来看, 也是随着每一个time step的输入序列会越来越长. 相比于训练阶段最大的不同是这里不断拼接进来的token是每一个time step的预测值, 而不是训练阶段每一个time step取得的groud truth值.
self-attention是一种通过自身和自身进行关联的attention机制, 从而得到更好的representation来表达自身.
self-attention是attention机制的一种特殊情况:
attention机制计算的特点在于, 可以直接跨越一句话中不同距离的token, 可以远距离的学习到序列的知识依赖和语序结构.
从上图中可以看到, self-attention可以远距离的捕捉到语义层面的特征(its的指代对象是Law).
应用传统的RNN, LSTM, 在获取长距离语义特征和结构特征的时候, 需要按照序列顺序依次计算, 距离越远的联系信息的损耗越大, 有效提取和捕获的可能性越小.
但是应用self-attention时, 计算过程中会直接将句子中任意两个token的联系通过一个计算步骤直接联系起来,
self-attention机制的重点是使用三元组(Q, K, V)参与规则运算, 这里面Q=K=V.
self-attention最大的优势是可以方便有效的提取远距离依赖的特征和结构信息, 不必向RNN那样依次计算产生传递损耗.
关于self-attention采用三元组的原因, 经典实现的方式数学意义明确, 理由充分, 至于其他方式的可行性暂时没有论文做充分的对比试验研究.
1: 原始论文中提到进行Multi-head Attention的原因是将模型分为多个头, 可以形成多个子空间, 让模型去关注不同方面的信息, 最后再将各个方面的信息综合起来得到更好的效果.
2: 多个头进行attention计算最后再综合起来, 类似于CNN中采用多个卷积核的作用, 不同的卷积核提取不同的特征, 关注不同的部分, 最后再进行融合.
3: 直观上讲, 多头注意力有助于神经网络捕捉到更丰富的特征信息.
1: Multi-head Attention和单一head的Attention唯一的区别就在于, 其对特征张量的最后一个维度进行了分割, 一般是对词嵌入的embedding_dim=512进行切割成head=8, 这样每一个head的嵌入维度就是512/8=64, 后续的Attention计算公式完全一致, 只不过是在64这个维度上进行一系列的矩阵运算而已.
2: 在head=8个头上分别进行注意力规则的运算后, 简单采用拼接concat的方式对结果张量进行融合就得到了Multi-head Attention的计算结果.
学习了Transformer架构采用Multi-head Attention的原因.
学习了Multi-head Attention的计算方式.
1: seq2seq架构的第一大缺陷是将Encoder端的所有信息压缩成一个固定长度的语义向量中, 用这个固定的向量来代表编码器端的全部信息. 这样既会造成信息的损耗, 也无法让Decoder端在解码的时候去用注意力聚焦哪些是更重要的信息.
2: seq2seq架构的第二大缺陷是无法并行, 本质上和RNN/LSTM无法并行的原因一样.
学习了seq2seq架构的两大缺陷.
学习了Transformer架构对seq2seq两大缺陷的改进.
训练上的意义: 随着词嵌入维度d_k的增大, q * k 点积后的结果也会增大, 在训练时会将softmax函数推入梯度非常小的区域, 可能出现梯度消失的现象, 造成模型收敛困难.
数学上的意义: 假设q和k的统计变量是满足标准正态分布的独立随机变量, 意味着q和k满足均值为0, 方差为1. 那么q和k的点积结果就是均值为0, 方差为d_k, 为了抵消这种方差被放大d_k倍的影响, 在计算中主动将点积缩放1/sqrt(d_k), 这样点积后的结果依然满足均值为0, 方差为1.
a = 1时, y3 = 0.5761168847658291
a = 10时, y3 = 0.9999092083843412
a = 100时, y3 = 1.0
- 采用一段实例代码将a在不同取值下, 对应的y3全部画出来, 以曲线的形式展示:
from math import exp
from matplotlib import pyplot as plt
import numpy as np
f = lambda x: exp(x * 2) / (exp(x) + exp(x) + exp(x * 2))
x = np.linspace(0, 100, 100)
y_3 = [f(x_i) for x_i in x]
plt.plot(x, y_3)
plt.show()
- 得到如下的曲线:
从上图可以很清楚的看到输入元素的数量级对softmax最终的分布影响非常之大.
结论: 在输入元素的数量级较大时, softmax函数几乎将全部的概率分布都分配给了最大值分量所对应的标签.
- 首先定义神经网络的输入和输出:
- 反向传播就是输出端的损失函数对输入端求偏导的过程, 这里要分两种情况, 第一种如下所示:
- 第二种如下所示:
- 经过对两种情况分别的求导计算, 可以得出最终的结论如下:
- 根据第二步中softmax函数的求导结果, 可以将最终的结果以矩阵形式展开如下:
- 根据第一步中的讨论结果, 当输入x的分量值较大时, softmax函数会将大部分概率分配给最大的元素, 假设最大元素是x1, 那么softmax的输出分布将产生一个接近one-hot的结果张量y_ = [1, 0, 0,..., 0], 此时结果矩阵变为:
- 结论: 综上可以得出, 所有的梯度都消失为0(接近于0), 参数几乎无法更新, 模型收敛困难.
To illustrate why the dot products get large, assume that the components of q and k
are independent random variables with mean 0 and variance 1. Then their doct product,
q*k = (q1k1+q2k2+......+q(d_k)k(d_k)), has mean 0 and variance d_k.
我们分两步对其进行一个推导, 首先就是假设向量q和k的各个分量是相互独立的随机变量, X = q_i, Y = k_i, X和Y各自有d_k个分量, 也就是向量的维度等于d_k, 有E(X) = E(Y) = 0, 以及D(X) = D(Y) = 1.
可以得到E(XY) = E(X)E(Y) = 0 * 0 = 0
同理, 对于D(XY)推导如下:
- 根据期望和方差的性质, 对于互相独立的变量满足下式:
根据上面的公式, 可以很轻松的得出q*k的均值为E(qk) = 0, D(qk) = d_k.
所以方差越大, 对应的qk的点积就越大, 这样softmax的输出分布就会更偏向最大值所在的分量.
一个技巧就是将点积除以sqrt(d_k), 将方差在数学上重新"拉回1", 如下所示:
- 最终的结论: 通过数学上的技巧将方差控制在1, 也就有效的控制了点积结果的发散, 也就控制了对应的梯度消失的问题!
1: 学习了softmax函数的输入是如何影响输出分布的.
2: 学习了softmax函数在反向传播的过程中是如何梯度求导的.
3: 学习了softmax函数出现梯度消失现象的原因.
4: 学习了维度和点积大小的关系推导.
1: 上图最底层绿色的部分, 整个序列所有的token可以并行的进行Embedding操作, 这一层的处理是没有依赖关系的.
2: 上图第二层土黄色的部分, 也就是Transformer中最重要的self-attention部分, 这里对于任意一个单词比如x1, 要计算x1对于其他所有token的注意力分布, 得到z1. 这个过程是具有依赖性的, 必须等到序列中所有的单词完成Embedding才可以进行. 因此这一步是不能并行处理的. 但是从另一个角度看, 我们真实计算注意力分布的时候, 采用的都是矩阵运算, 也就是可以一次性的计算出所有token的注意力张量, 从这个角度看也算是实现了并行, 只是矩阵运算的"并行"和词嵌入的"并行"概念上不同而已.
3: 上图第三层蓝色的部分, 也就是前馈全连接层, 对于不同的向量z之间也是没有依赖关系的, 所以这一层是可以实现并行化处理的. 也就是所有的向量z输入Feed Forward网络的计算可以同步进行, 互不干扰.
1: Decoder模块在训练阶段采用了并行化处理. 其中Self-Attention和Encoder-Decoder Attention两个子层的并行化也是在进行矩阵乘法, 和Encoder的理解是一致的. 在进行Embedding和Feed Forward的处理时, 因为各个token之间没有依赖关系, 所以也是可以完全并行化处理的, 这里和Encoder的理解也是一致的.
2: Decoder模块在预测阶段基本上不认为采用了并行化处理. 因为第一个time step的输入只是一个"SOS", 后续每一个time step的输入也只是依次添加之前所有的预测token.
3: 注意: 最重要的区别是训练阶段目标文本如果有20个token, 在训练过程中是一次性的输入给Decoder端, 可以做到一些子层的并行化处理. 但是在预测阶段, 如果预测的结果语句总共有20个token, 则需要重复处理20次循环的过程, 每次的输入添加进去一个token, 每次的输入序列比上一次多一个token, 所以不认为是并行处理.
学习了Transformer架构中Encoder模块的并行化机制.
学习了Transformer架构中Decoder模块的并行化机制.
1: 通过预训练, 加上Fine-tunning, 在11项NLP任务上取得最优结果.
2: BERT的根基源于Transformer, 相比传统RNN更加高效, 可以并行化处理同时能捕捉长距离的语义和结构依赖.
3: BERT采用了Transformer架构中的Encoder模块, 不仅仅获得了真正意义上的bidirectional context, 而且为后续微调任务留出了足够的调整空间.
1: BERT模型过于庞大, 参数太多, 不利于资源紧张的应用场景, 也不利于上线的实时处理.
2: BERT目前给出的中文模型中, 是以字为基本token单位的, 很多需要词向量的应用无法直接使用. 同时该模型无法识别很多生僻词, 只能以UNK代替.
3: BERT中第一个预训练任务MLM中, [MASK]标记只在训练阶段出现, 而在预测阶段不会出现, 这就造成了一定的信息偏差, 因此训练时不能过多的使用[MASK], 否则会影响模型的表现.
4: 按照BERT的MLM任务中的约定, 每个batch数据中只有15%的token参与了训练, 被模型学习和预测, 所以BERT收敛的速度比left-to-right模型要慢很多(left-to-right模型中每一个token都会参与训练).
学习了BERT模型的3个优点:
学习了BERT模型的4个缺点:
1: 首先, 如果所有参与训练的token被100%的[MASK], 那么在fine-tunning的时候所有单词都是已知的, 不存在[MASK], 那么模型就只能根据其他token的信息和语序结构来预测当前词, 而无法利用到这个词本身的信息, 因为它们从未出现在训练过程中, 等于模型从未接触到它们的信息, 等于整个语义空间损失了部分信息. 采用80%的概率下应用[MASK], 既可以让模型去学着预测这些单词, 又以20%的概率保留了语义信息展示给模型.
2: 保留下来的信息如果全部使用原始token, 那么模型在预训练的时候可能会偷懒, 直接照抄当前token信息. 采用10%概率下random token来随机替换当前token, 会让模型不能去死记硬背当前的token, 而去尽力学习单词周边的语义表达和远距离的信息依赖, 尝试建模完整的语言信息.
3: 最后再以10%的概率保留原始的token, 意义就是保留语言本来的面貌, 让信息不至于完全被遮掩, 使得模型可以"看清"真实的语言面貌.
BERT中MLM任务中的[MASK]是以一种显示的方式告诉模型"这个词我不告诉你, 你自己从上下文里猜", 非常类似于同学们在做完形填空. 如果[MASK]意外的部分全部都用原始token, 模型会学习到"如果当前词是[MASK], 就根据其他词的信息推断这个词; 如果当前词是一个正常的单词, 就直接照抄". 这样一来, 到了fine-tunning阶段, 所有单词都是正常单词了, 模型就会照抄所有单词, 不再提取单词之间的依赖关系了.
BERT中MLM任务以10%的概率填入random token, 就是让模型时刻处于"紧张情绪"中, 让模型搞不清楚当前看到的token是真实的单词还是被随机替换掉的单词, 这样模型在任意的token位置就只能把当前token的信息和上下文信息结合起来做综合的判断和建模. 这样一来, 到了fine-tunning阶段, 模型也会同时提取这两方面的信息, 因为模型"心理很紧张", 它不知道当前看到的这个token, 所谓的"正常单词"到底有没有"提前被动过手脚".
首选要明确一点, BERT预训练模型所接收的最大sequence长度是512.
那么对于长文本(文本长度超过512的句子), 就需要特殊的方式来构造训练样本. 核心就是如何进行截断.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。