当前位置:   article > 正文

苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践

苹果AppleMacOs最新Sonoma系统本地训练和推理GPT-SoVITS模型实践

在这里插入图片描述

GPT-SoVITS是少有的可以在MacOs系统下训练和推理的TTS项目,虽然在效率上没有办法和N卡设备相提并论,但终归是开发者在MacOs系统构建基于M系列芯片AI生态的第一步。

苹果MacOs系统本地训练和推理GPT-SoVITS模型

环境搭建

首先要确保本地环境已经安装好版本大于6.1的FFMPEG软件:

(base) ➜  ~ ffmpeg -version  
ffmpeg version 6.1.1 Copyright (c) 2000-2023 the FFmpeg developers  
built with Apple clang version 15.0.0 (clang-1500.1.0.2.5)  
configuration: --prefix=/opt/homebrew/Cellar/ffmpeg/6.1.1_3 --enable-shared --enable-pthreads --enable-version3 --cc=clang --host-cflags= --host-ldflags='-Wl,-ld_classic' --enable-ffplay --enable-gnutls --enable-gpl --enable-libaom --enable-libaribb24 --enable-libbluray --enable-libdav1d --enable-libharfbuzz --enable-libjxl --enable-libmp3lame --enable-libopus --enable-librav1e --enable-librist --enable-librubberband --enable-libsnappy --enable-libsrt --enable-libssh --enable-libsvtav1 --enable-libtesseract --enable-libtheora --enable-libvidstab --enable-libvmaf --enable-libvorbis --enable-libvpx --enable-libwebp --enable-libx264 --enable-libx265 --enable-libxml2 --enable-libxvid --enable-lzma --enable-libfontconfig --enable-libfreetype --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-libopenvino --enable-libspeex --enable-libsoxr --enable-libzmq --enable-libzimg --disable-libjack --disable-indev=jack --enable-videotoolbox --enable-audiotoolbox --enable-neon  
libavutil      58. 29.100 / 58. 29.100  
libavcodec     60. 31.102 / 60. 31.102  
libavformat    60. 16.100 / 60. 16.100  
libavdevice    60.  3.100 / 60.  3.100  
libavfilter     9. 12.100 /  9. 12.100  
libswscale      7.  5.100 /  7.  5.100  
libswresample   4. 12.100 /  4. 12.100  
libpostproc    57.  3.100 / 57.  3.100
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

如果没有安装,可以先升级HomeBrew,随后通过brew命令来安装FFMPEG:

brew cleanup && brew update
  • 1

安装ffmpeg

brew install ffmpeg
  • 1

随后需要确保本地已经安装好了conda环境:

(base) ➜  ~ conda info  
  
     active environment : base  
    active env location : /Users/liuyue/anaconda3  
            shell level : 1  
       user config file : /Users/liuyue/.condarc  
 populated config files : /Users/liuyue/.condarc  
          conda version : 23.7.4  
    conda-build version : 3.26.1  
         python version : 3.11.5.final.0  
       virtual packages : __archspec=1=arm64  
                          __osx=14.3=0  
                          __unix=0=0  
       base environment : /Users/liuyue/anaconda3  (writable)  
      conda av data dir : /Users/liuyue/anaconda3/etc/conda  
  conda av metadata url : None  
           channel URLs : https://repo.anaconda.com/pkgs/main/osx-arm64  
                          https://repo.anaconda.com/pkgs/main/noarch  
                          https://repo.anaconda.com/pkgs/r/osx-arm64  
                          https://repo.anaconda.com/pkgs/r/noarch  
          package cache : /Users/liuyue/anaconda3/pkgs  
                          /Users/liuyue/.conda/pkgs  
       envs directories : /Users/liuyue/anaconda3/envs  
                          /Users/liuyue/.conda/envs  
               platform : osx-arm64  
             user-agent : conda/23.7.4 requests/2.31.0 CPython/3.11.5 Darwin/23.3.0 OSX/14.3 aau/0.4.2 s/XQcGHFltC5oP5DK5UVaTDA e/E37crlCLfv4OPFn-Q0QPJw  
                UID:GID : 502:20  
             netrc file : None  
           offline mode : False
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

如果没有安装过conda,推荐去anaconda官网下载安装包:

https://www.anaconda.com
  • 1

接着通过conda命令创建并激活基于3.9的Python开发虚拟环境:

conda create -n GPTSoVits python=3.9  
conda activate GPTSoVits
  • 1
  • 2

安装依赖以及Mac版本的Torch

克隆GPT-SoVits项目:

https://github.com/RVC-Boss/GPT-SoVITS.git
  • 1

进入项目:

cd GPT-SoVITS
  • 1

安装基础依赖:

pip3 install -r requirements.txt
  • 1

安装基于Mac的Pytorch:

pip3 install --pre torch torchaudio --index-url https://download.pytorch.org/whl/nightly/cpu
  • 1

随后检查一下mps是否可用:

(base) ➜  ~ conda activate GPTSoVits  
(GPTSoVits) ➜  ~ python  
Python 3.9.18 (main, Sep 11 2023, 08:25:10)   
[Clang 14.0.6 ] :: Anaconda, Inc. on darwin  
Type "help", "copyright", "credits" or "license" for more information.  
>>> import torch  
>>> torch.backends.mps.is_available()   
True  
>>>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

如果没有问题,那么直接在项目目录运行命令进入webui即可:

python3 webui.py
  • 1

到底用CPU还是用MPS

在推理环节上,有个细节非常值得玩味,那就是,到底是MPS效率更高,还是直接用CPU效率更高,理论上当然是MPS了,但其实未必,我们可以修改项目中的config.py文件来强行指定api推理设备:

if torch.cuda.is_available():  
    infer_device = "cuda"  
elif torch.backends.mps.is_available():  
    infer_device = "mps"  
else:  
    infer_device = "cpu"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

或者修改inference_webui.py文件来指定页面推理设备:

if torch.cuda.is_available():  
    device = "cuda"  
elif torch.backends.mps.is_available():  
    device = "mps"  
else:  
    device = "cpu"
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

基于cpu的推理效率:

CPU推理时Python全程内存占用3GB,内存曲线全程绿色,推理速度长时间保持55it/s。

作为对比,使用MPS进行推理,GPU推理时,Python进程内存占用持续稳步上升至14GB,推理速度最高30it/s,偶发1-2it/s。

但实际上,在Pytorch官方的帖子中:

https://github.com/pytorch/pytorch/issues/111517
  • 1

提到了解决方案,即修改cmakes的编译方式。

修改后推理对比:

cpu推理:  
  
['zh']  
 19%|███████▍                                | 280/1500 [00:12<00:47, 25.55it/s]T2S Decoding EOS [102 -> 382]  
 19%|███████▍                                | 280/1500 [00:12<00:56, 21.54it/s]

gpu推理:  
  
 21%|████████▌                               | 322/1500 [00:08<00:32, 36.46it/s]T2S Decoding EOS [102 -> 426]  
 22%|████████▋                               | 324/1500 [00:08<00:29, 39.26it/s]  
  

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

但MPS方式确实有内存泄露的现象。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Cpp五条/article/detail/143484
推荐阅读
相关标签
  

闽ICP备14008679号