赞
踩
Unity万人同屏动态避障 GPU动画 Entities Graphics高性能合批渲染插件的使用_哔哩哔哩_bilibili
由于Dots的限制太多,对于需要dlc或热更的项目来说,Dots就爱莫能助。能不能不用Entities,只用Entities Graphics呢?
当然是可以的,Entities Graphics背后使用的接口就是Batch Renderer Group;
自定义BatchRenderGroup合批渲染, 可以参考Unity官方文档:Initializing a BatchRendererGroup object - Unity 手册
1. 创建一个BatchRenderGroup对象和Graphics Buffer:
m_BRG = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
m_InstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw,
BufferCountForInstances(kBytesPerInstance, kNumInstances, kExtraBytes),
sizeof(int));
2. 注册需要渲染的Mesh和对应的Material:
m_MeshID = m_BRG.RegisterMesh(mesh);
m_MaterialID = m_BRG.RegisterMaterial(material);
3. 为所有需要渲染的目标创建矩阵数组并传入Graphics Buffer里:
m_InstanceData.SetData(objectToWorld, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
m_InstanceData.SetData(worldToObject, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
4. 把Graphics Buffer添加到BatchRenderGroup进行批次渲染:
m_BatchID = m_BRG.AddBatch(metadata, m_InstanceData.bufferHandle);
创建BatchRenderGroup需要指定一个OnPerformCulling,在相机Culling时自动回调,这里可以直接使用Unity手册里的示例代码:Creating draw commands - Unity 手册
这里我主要测试的使用BatchRenderGroup合批渲染的性能,使用Job System多线程并行修改矩阵数组的位置和旋转,以控制小人移动起来。
控制小人移动的Job System代码如下:
- [BurstCompile]
- partial struct RandomMoveJob : IJobParallelFor
- {
- [ReadOnly]
- public Unity.Mathematics.Random random;
- [ReadOnly]
- public float4 randomPostionRange;
- [ReadOnly]
- public float m_DeltaTime;
-
- public NativeArray<Matrix4x4> matrices;
- public NativeArray<float3> targetMovePoints;
- public NativeArray<PackedMatrix> obj2WorldArr;
- public NativeArray<PackedMatrix> world2ObjArr;
- [BurstCompile]
- public void Execute(int index)
- {
- float3 curPos = matrices[index].GetPosition();
- float3 dir = targetMovePoints[index] - curPos;
- if (Unity.Mathematics.math.lengthsq(dir) < 0.4f)
- {
- var newTargetPos = targetMovePoints[index];
- newTargetPos.x = random.NextFloat(randomPostionRange.x, randomPostionRange.y);
- newTargetPos.z = random.NextFloat(randomPostionRange.z, randomPostionRange.w);
- targetMovePoints[index] = newTargetPos;
- }
-
- dir = math.normalizesafe(targetMovePoints[index] - curPos, Vector3.forward);
- curPos += dir * m_DeltaTime;// math.lerp(curPos, targetMovePoints[index], m_DeltaTime);
-
- var mat = matrices[index];
- mat.SetTRS(curPos, Quaternion.LookRotation(dir), Vector3.one);
- matrices[index] = mat;
- var item = obj2WorldArr[index];
- item.SetData(mat);
- obj2WorldArr[index] = item;
-
- item = world2ObjArr[index];
- item.SetData(mat.inverse);
- world2ObjArr[index] = item;
- }
- }
然后在主线程Update每帧Jobs逻辑,把Jobs运算结果传入Graphics Buffer更新即可:
- private void Update()
- {
- NativeArray<Matrix4x4> tempMatrices = new NativeArray<Matrix4x4>(matrices, Allocator.TempJob);
- NativeArray<float3> tempTargetPoints = new NativeArray<float3>(m_TargetPoints, Allocator.TempJob);//worldToObject
- NativeArray<PackedMatrix> tempobjectToWorldArr = new NativeArray<PackedMatrix>(matrices.Length, Allocator.TempJob);
- NativeArray<PackedMatrix> tempWorldToObjectArr = new NativeArray<PackedMatrix>(matrices.Length, Allocator.TempJob);
- random = new Unity.Mathematics.Random((uint)Time.frameCount);
- var moveJob = new RandomMoveJob
- {
- matrices = tempMatrices,
- targetMovePoints = tempTargetPoints,
- random = random,
- m_DeltaTime = Time.deltaTime * 4f,
- randomPostionRange = m_randomRange,
- obj2WorldArr = tempobjectToWorldArr,
- world2ObjArr = tempWorldToObjectArr
- };
- var moveJobHandle = moveJob.Schedule(tempMatrices.Length, 64);
- moveJobHandle.Complete();
- matrices = moveJob.matrices.ToArray();
- m_TargetPoints = moveJob.targetMovePoints.ToArray();
- m_InstanceData.SetData(moveJob.obj2WorldArr, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
- m_InstanceData.SetData(moveJob.world2ObjArr, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
- tempMatrices.Dispose();
- tempTargetPoints.Dispose();
- tempobjectToWorldArr.Dispose();
- tempWorldToObjectArr.Dispose();
- }
Okay,跑起来看看:
瞬间惊呆了,你没看错,使用Batch Renderer Group创建一万的小人居然能跑600多帧!!!
难道万人同屏要成了?继续加大药量,创建10万个带有移动逻辑的小人:
10万个奔跑的3D人物,仍然有100帧以上,有23个线程并行计算移动。
看看性能分析:
当数量级庞大时,即使Job System + Burst编译再怎么开挂,主线程也会拖后腿的。
100万的压迫感,虽然已经成PPT了:
难道万人同屏行业难题的门槛就这么被Unity Dots打下来了??
非也,上移动端测试:
同样1万个小人,PC端能达到惊人的600帧,而Android最强骁龙8 Gen2只有10多帧,而且工作线程数才5个; 当数量3000人时,手机端帧数46帧左右,相比传统方式没有任何提升!没错,没有任何提升。
Profiler中可以看到,瓶颈依然是GPU。 而Entities Graphics内部也是通过Batch Renderer Group接口实现,由此可以推断,被吹爆的Entities在移动端因该也是"水土不服":
结论:
目前为止,我认为使用自定义BatchRendererGroup合批是PC端万人同屏的最优解了。
但是手机端性能瓶颈任重道远。手机端放弃!
最后附上本文BatchRendererGroup测试代码:
- using System;
- using TMPro;
- using Unity.Burst;
- using Unity.Collections;
- using Unity.Collections.LowLevel.Unsafe;
- using Unity.Jobs;
- using Unity.Jobs.LowLevel.Unsafe;
- using Unity.Mathematics;
- using UnityEngine;
- using UnityEngine.Rendering;
-
- // The PackedMatrix is a convenience type that converts matrices into
- // the format that Unity-provided SRP shaders expect.
- struct PackedMatrix
- {
- public float c0x;
- public float c0y;
- public float c0z;
- public float c1x;
- public float c1y;
- public float c1z;
- public float c2x;
- public float c2y;
- public float c2z;
- public float c3x;
- public float c3y;
- public float c3z;
-
- public PackedMatrix(Matrix4x4 m)
- {
- c0x = m.m00;
- c0y = m.m10;
- c0z = m.m20;
- c1x = m.m01;
- c1y = m.m11;
- c1z = m.m21;
- c2x = m.m02;
- c2y = m.m12;
- c2z = m.m22;
- c3x = m.m03;
- c3y = m.m13;
- c3z = m.m23;
- }
-
- public void SetData(Matrix4x4 m)
- {
- c0x = m.m00;
- c0y = m.m10;
- c0z = m.m20;
- c1x = m.m01;
- c1y = m.m11;
- c1z = m.m21;
- c2x = m.m02;
- c2y = m.m12;
- c2z = m.m22;
- c3x = m.m03;
- c3y = m.m13;
- c3z = m.m23;
- }
- }
- public class SimpleBRGExample : MonoBehaviour
- {
- public Mesh mesh;
- public Material material;
- public TextMeshProUGUI text;
- public TextMeshProUGUI workerCountText;
- private BatchRendererGroup m_BRG;
-
- private GraphicsBuffer m_InstanceData;
- private BatchID m_BatchID;
- private BatchMeshID m_MeshID;
- private BatchMaterialID m_MaterialID;
-
- // Some helper constants to make calculations more convenient.
- private const int kSizeOfMatrix = sizeof(float) * 4 * 4;
- private const int kSizeOfPackedMatrix = sizeof(float) * 4 * 3;
- private const int kSizeOfFloat4 = sizeof(float) * 4;
- private const int kBytesPerInstance = (kSizeOfPackedMatrix * 2) + kSizeOfFloat4;
- private const int kExtraBytes = kSizeOfMatrix * 2;
- [SerializeField] private int kNumInstances = 20000;
- [SerializeField] private int m_RowCount = 200;
- private Matrix4x4[] matrices;
- private PackedMatrix[] objectToWorld;
- private PackedMatrix[] worldToObject;
- private Vector4[] colors;
-
- private void Start()
- {
- m_BRG = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
- m_MeshID = m_BRG.RegisterMesh(mesh);
- m_MaterialID = m_BRG.RegisterMaterial(material);
- AllocateInstanceDateBuffer();
- PopulateInstanceDataBuffer();
-
- text.text = kNumInstances.ToString();
- random = new Unity.Mathematics.Random(1);
- m_TargetPoints = new float3[kNumInstances];
- var offset = new Vector3(m_RowCount, 0, Mathf.CeilToInt(kNumInstances / (float)m_RowCount)) * 0.5f;
- m_randomRange = new float4(-offset.x, offset.x, -offset.z, offset.z);
- for (int i = 0; i < m_TargetPoints.Length; i++)
- {
- var newTargetPos = new float3();
- newTargetPos.x = random.NextFloat(m_randomRange.x, m_randomRange.y);
- newTargetPos.z = random.NextFloat(m_randomRange.z, m_randomRange.w);
- m_TargetPoints[i] = newTargetPos;
- }
-
- }
-
- float3[] m_TargetPoints;
- Unity.Mathematics.Random random;
- Vector4 m_randomRange;
- private uint byteAddressObjectToWorld;
- private uint byteAddressWorldToObject;
- private uint byteAddressColor;
-
- private void Update()
- {
- NativeArray<Matrix4x4> tempMatrices = new NativeArray<Matrix4x4>(matrices, Allocator.TempJob);
- NativeArray<float3> tempTargetPoints = new NativeArray<float3>(m_TargetPoints, Allocator.TempJob);//worldToObject
- NativeArray<PackedMatrix> tempobjectToWorldArr = new NativeArray<PackedMatrix>(matrices.Length, Allocator.TempJob);
- NativeArray<PackedMatrix> tempWorldToObjectArr = new NativeArray<PackedMatrix>(matrices.Length, Allocator.TempJob);
- random = new Unity.Mathematics.Random((uint)Time.frameCount);
- var moveJob = new RandomMoveJob
- {
- matrices = tempMatrices,
- targetMovePoints = tempTargetPoints,
- random = random,
- m_DeltaTime = Time.deltaTime * 4f,
- randomPostionRange = m_randomRange,
- obj2WorldArr = tempobjectToWorldArr,
- world2ObjArr = tempWorldToObjectArr
- };
- var moveJobHandle = moveJob.Schedule(tempMatrices.Length, 64);
- moveJobHandle.Complete();
- matrices = moveJob.matrices.ToArray();
- m_TargetPoints = moveJob.targetMovePoints.ToArray();
- m_InstanceData.SetData(moveJob.obj2WorldArr, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
- m_InstanceData.SetData(moveJob.world2ObjArr, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
- tempMatrices.Dispose();
- tempTargetPoints.Dispose();
- tempobjectToWorldArr.Dispose();
- tempWorldToObjectArr.Dispose();
-
- workerCountText.text = $"JobWorkerCount:{JobsUtility.JobWorkerCount}";
- }
-
- private void AllocateInstanceDateBuffer()
- {
- m_InstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw,
- BufferCountForInstances(kBytesPerInstance, kNumInstances, kExtraBytes),
- sizeof(int));
- }
- private void RefreshData()
- {
- m_InstanceData.SetData(objectToWorld, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
- m_InstanceData.SetData(worldToObject, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
- }
- private void PopulateInstanceDataBuffer()
- {
- // Place a zero matrix at the start of the instance data buffer, so loads from address 0 return zero.
- var zero = new Matrix4x4[1] { Matrix4x4.zero };
-
- // Create transform matrices for three example instances.
- matrices = new Matrix4x4[kNumInstances];
- // Convert the transform matrices into the packed format that shaders expects.
- objectToWorld = new PackedMatrix[kNumInstances];
- // Also create packed inverse matrices.
- worldToObject = new PackedMatrix[kNumInstances];
- // Make all instances have unique colors.
- colors = new Vector4[kNumInstances];
-
- var offset = new Vector3(m_RowCount, 0, Mathf.CeilToInt(kNumInstances / (float)m_RowCount)) * 0.5f;
- for (int i = 0; i < kNumInstances; i++)
- {
- matrices[i] = Matrix4x4.Translate(new Vector3(i % m_RowCount, 0, i / m_RowCount) - offset);
- objectToWorld[i] = new PackedMatrix(matrices[i]);
- worldToObject[i] = new PackedMatrix(matrices[0].inverse);
- colors[i] = UnityEngine.Random.ColorHSV();
- }
-
- // In this simple example, the instance data is placed into the buffer like this:
- // Offset | Description
- // 0 | 64 bytes of zeroes, so loads from address 0 return zeroes
- // 64 | 32 uninitialized bytes to make working with SetData easier, otherwise unnecessary
- // 96 | unity_ObjectToWorld, three packed float3x4 matrices
- // 240 | unity_WorldToObject, three packed float3x4 matrices
- // 384 | _BaseColor, three float4s
-
- // Calculates start addresses for the different instanced properties. unity_ObjectToWorld starts at
- // address 96 instead of 64 which means 32 bits are left uninitialized. This is because the
- // computeBufferStartIndex parameter requires the start offset to be divisible by the size of the source
- // array element type. In this case, it's the size of PackedMatrix, which is 48.
- byteAddressObjectToWorld = kSizeOfPackedMatrix * 2;
- byteAddressWorldToObject = byteAddressObjectToWorld + kSizeOfPackedMatrix * (uint)kNumInstances;
- byteAddressColor = byteAddressWorldToObject + kSizeOfPackedMatrix * (uint)kNumInstances;
-
- // Upload the instance data to the GraphicsBuffer so the shader can load them.
- m_InstanceData.SetData(zero, 0, 0, 1);
- m_InstanceData.SetData(objectToWorld, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
- m_InstanceData.SetData(worldToObject, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
- m_InstanceData.SetData(colors, 0, (int)(byteAddressColor / kSizeOfFloat4), colors.Length);
-
- // Set up metadata values to point to the instance data. Set the most significant bit 0x80000000 in each
- // which instructs the shader that the data is an array with one value per instance, indexed by the instance index.
- // Any metadata values that the shader uses and not set here will be zero. When such a value is used with
- // UNITY_ACCESS_DOTS_INSTANCED_PROP (i.e. without a default), the shader interprets the
- // 0x00000000 metadata value and loads from the start of the buffer. The start of the buffer which is
- // is a zero matrix so this sort of load is guaranteed to return zero, which is a reasonable default value.
- var metadata = new NativeArray<MetadataValue>(3, Allocator.Temp);
- metadata[0] = new MetadataValue { NameID = Shader.PropertyToID("unity_ObjectToWorld"), Value = 0x80000000 | byteAddressObjectToWorld, };
- metadata[1] = new MetadataValue { NameID = Shader.PropertyToID("unity_WorldToObject"), Value = 0x80000000 | byteAddressWorldToObject, };
- metadata[2] = new MetadataValue { NameID = Shader.PropertyToID("_BaseColor"), Value = 0x80000000 | byteAddressColor, };
-
- // Finally, create a batch for the instances, and make the batch use the GraphicsBuffer with the
- // instance data, as well as the metadata values that specify where the properties are.
- m_BatchID = m_BRG.AddBatch(metadata, m_InstanceData.bufferHandle);
- }
-
- // Raw buffers are allocated in ints. This is a utility method that calculates
- // the required number of ints for the data.
- int BufferCountForInstances(int bytesPerInstance, int numInstances, int extraBytes = 0)
- {
- // Round byte counts to int multiples
- bytesPerInstance = (bytesPerInstance + sizeof(int) - 1) / sizeof(int) * sizeof(int);
- extraBytes = (extraBytes + sizeof(int) - 1) / sizeof(int) * sizeof(int);
- int totalBytes = bytesPerInstance * numInstances + extraBytes;
- return totalBytes / sizeof(int);
- }
-
-
- private void OnDisable()
- {
- m_BRG.Dispose();
- }
-
- public unsafe JobHandle OnPerformCulling(
- BatchRendererGroup rendererGroup,
- BatchCullingContext cullingContext,
- BatchCullingOutput cullingOutput,
- IntPtr userContext)
- {
- // UnsafeUtility.Malloc() requires an alignment, so use the largest integer type's alignment
- // which is a reasonable default.
- int alignment = UnsafeUtility.AlignOf<long>();
-
- // Acquire a pointer to the BatchCullingOutputDrawCommands struct so you can easily
- // modify it directly.
- var drawCommands = (BatchCullingOutputDrawCommands*)cullingOutput.drawCommands.GetUnsafePtr();
- // Allocate memory for the output arrays. In a more complicated implementation, you would calculate
- // the amount of memory to allocate dynamically based on what is visible.
- // This example assumes that all of the instances are visible and thus allocates
- // memory for each of them. The necessary allocations are as follows:
- // - a single draw command (which draws kNumInstances instances)
- // - a single draw range (which covers our single draw command)
- // - kNumInstances visible instance indices.
- // You must always allocate the arrays using Allocator.TempJob.
- drawCommands->drawCommands = (BatchDrawCommand*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<BatchDrawCommand>(), alignment, Allocator.TempJob);
- drawCommands->drawRanges = (BatchDrawRange*)UnsafeUtility.Malloc(UnsafeUtility.SizeOf<BatchDrawRange>(), alignment, Allocator.TempJob);
- drawCommands->visibleInstances = (int*)UnsafeUtility.Malloc(kNumInstances * sizeof(int), alignment, Allocator.TempJob);
- drawCommands->drawCommandPickingInstanceIDs = null;
-
- drawCommands->drawCommandCount = 1;
- drawCommands->drawRangeCount = 1;
- drawCommands->visibleInstanceCount = kNumInstances;
-
- // This example doens't use depth sorting, so it leaves instanceSortingPositions as null.
- drawCommands->instanceSortingPositions = null;
- drawCommands->instanceSortingPositionFloatCount = 0;
-
- // Configure the single draw command to draw kNumInstances instances
- // starting from offset 0 in the array, using the batch, material and mesh
- // IDs registered in the Start() method. It doesn't set any special flags.
- drawCommands->drawCommands[0].visibleOffset = 0;
- drawCommands->drawCommands[0].visibleCount = (uint)kNumInstances;
- drawCommands->drawCommands[0].batchID = m_BatchID;
- drawCommands->drawCommands[0].materialID = m_MaterialID;
- drawCommands->drawCommands[0].meshID = m_MeshID;
- drawCommands->drawCommands[0].submeshIndex = 0;
- drawCommands->drawCommands[0].splitVisibilityMask = 0xff;
- drawCommands->drawCommands[0].flags = 0;
- drawCommands->drawCommands[0].sortingPosition = 0;
-
- // Configure the single draw range to cover the single draw command which
- // is at offset 0.
- drawCommands->drawRanges[0].drawCommandsBegin = 0;
- drawCommands->drawRanges[0].drawCommandsCount = 1;
-
- // This example doesn't care about shadows or motion vectors, so it leaves everything
- // at the default zero values, except the renderingLayerMask which it sets to all ones
- // so Unity renders the instances regardless of mask settings.
- drawCommands->drawRanges[0].filterSettings = new BatchFilterSettings { renderingLayerMask = 0xffffffff, };
-
- // Finally, write the actual visible instance indices to the array. In a more complicated
- // implementation, this output would depend on what is visible, but this example
- // assumes that everything is visible.
- for (int i = 0; i < kNumInstances; ++i)
- drawCommands->visibleInstances[i] = i;
-
- // This simple example doesn't use jobs, so it returns an empty JobHandle.
- // Performance-sensitive applications are encouraged to use Burst jobs to implement
- // culling and draw command output. In this case, this function returns a
- // handle here that completes when the Burst jobs finish.
- return new JobHandle();
- }
- }
- [BurstCompile]
- partial struct RandomMoveJob : IJobParallelFor
- {
- [ReadOnly]
- public Unity.Mathematics.Random random;
- [ReadOnly]
- public float4 randomPostionRange;
- [ReadOnly]
- public float m_DeltaTime;
-
- public NativeArray<Matrix4x4> matrices;
- public NativeArray<float3> targetMovePoints;
- public NativeArray<PackedMatrix> obj2WorldArr;
- public NativeArray<PackedMatrix> world2ObjArr;
- [BurstCompile]
- public void Execute(int index)
- {
- float3 curPos = matrices[index].GetPosition();
- float3 dir = targetMovePoints[index] - curPos;
- if (Unity.Mathematics.math.lengthsq(dir) < 0.4f)
- {
- var newTargetPos = targetMovePoints[index];
- newTargetPos.x = random.NextFloat(randomPostionRange.x, randomPostionRange.y);
- newTargetPos.z = random.NextFloat(randomPostionRange.z, randomPostionRange.w);
- targetMovePoints[index] = newTargetPos;
- }
-
- dir = math.normalizesafe(targetMovePoints[index] - curPos, Vector3.forward);
- curPos += dir * m_DeltaTime;// math.lerp(curPos, targetMovePoints[index], m_DeltaTime);
-
- var mat = matrices[index];
- mat.SetTRS(curPos, Quaternion.LookRotation(dir), Vector3.one);
- matrices[index] = mat;
- var item = obj2WorldArr[index];
- item.SetData(mat);
- obj2WorldArr[index] = item;
-
- item = world2ObjArr[index];
- item.SetData(mat.inverse);
- world2ObjArr[index] = item;
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。