当前位置:   article > 正文

RCNN系列、Fast-RCNN、Faster-RCNN、R-FCN检测模型对比_rfcn与faster-rcnn优点

rfcn与faster-rcnn优点

RCNN系列、Fast-RCNN、Faster-RCNN、R-FCN检测模型对比

一.RCNN

问题一:速度

经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。

问题二:训练集

经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数据库:

一个较大的识别库(ImageNet ILSVC 2012):标定每张图片中物体的类别。一千万图像,1000类。

一个较小的检测库(PASCAL VOC 2007):标定每张图片中,物体的类别和位置。一万图像,20类。

保证合并后形状规则。
在这里插入图片描述

网络分为四个部分:区域划分、特征提取、区域分类、边框回归

区域划分:使用selective
search算法画出2k个左右候选框,送入CNN

特征提取:使用imagenet上训练好的模型,进行finetune

区域分类:从头训练一个SVM分类器,对CNN出来的特征向量进行分类

边框回归:使用线性回归,对边框坐标进行精修

优点:

ss算法比滑窗得到候选框高效一些;使用了神经网络的结构,准确率比传统检测提高了

缺点:

1、ss算法太耗时,每张图片都分成2

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/250284
推荐阅读
相关标签
  

闽ICP备14008679号