赞
踩
在阅读一篇论文时,我们很自然地想看看论文中提出的算法和模型实现的代码。然而,机器学习领域虽然有开源的优良传统,但提出新算法的最新论文中,真正公开算法代码的着实不多,找到对应论文的相关代码库也不容易。
去年在AAAI会议上,挪威一名计算机科学家报告了一项调查的结果:过去几年发表的AI顶会论文提出的400种算法中,只有6%的研究者公开了算法的代码。另外,只有三分之一的人分享了他们测试算法的数据,而只有一半分享了“伪代码”。
CREDITS: (GRAPHIC) E. HAND/SCIENCE; (DATA) GUNDERSEN AND KJENSMO, ASSOCIATION FOR THE ADVANCEMENT OF ARTIFICIAL INTELLIGENCE 2018
via新智元报道:【AI幽灵】超90%论文算法不可复现,你为何不愿公开代码?
现在,有一个找到论文代码的“神器”出现了。Reddit用户rstoj做了一个网站,将ArXiv上的最新机器学习论文与GitHub上的代码(TensorFlow/PyTorch/MXNet /等)对应起来。你可以按标题关键词查询,也可以按流行程度、GitHub星星数排列“热门研究”。这个网站能让你跟上ML社区流行的最新动态。
网站地址:https://paperswithcode.com/
这个项目索引了大约5万篇论文(最近5年发布在arxiv上的论文)和1万个GitHub库。网站刚刚上线,功能还有些单一,作者表示未来还将增加标签索引、链接媒体文章和教程等功能。以下介绍按GitHub星星数排列的Top 10研究,来先睹为快吧!
1. Caffe:一个快速、开源的深度学习框架
star:24,596
代码:https://github.com/BVLC/caffe
论文:http://arxiv.org/abs/1408.5093v1
Caffe 是一个深度学习框架,在设计时将表达式、速度和模块化考虑在内。这个热门的计算机视觉框架由 Berkeley AI Research(BAIR)和社区贡献者开发。贾扬清在UC Berkeley博士期间创建了这个项目。Caffe 可为学术研究项目、新创公司原型和大规模行业应用程序提供强大的视觉、语音和多媒体支持。
Caffe是一个采用BSD许可证发布的C ++库,使用Python和MATLAB绑定,可在商用架构上有效训练和部署通用卷积神经网络和其他深层模型。Caffe通过CUDA GPU计算满足行业和互联网规模的媒体需求,在单个K40或Titan GPU上,媒体处理超过4000万张图像。
2. Neural Style:神经风格转换算法
A Neural Algorithm of Artistic Style
star:15,840
代码:https://github.com/jcjohnson/neural-style
论文:http://arxiv.org/abs/1508.06576v2
在艺术,特别是绘画中,人类已经掌握了通过图像风格来创造独特的视觉体验的技巧。在这篇论文中,研究人员提出一种算法,用卷积神经网络将一幅图像的内容与另一幅图像的风格进行组合。下面是一个将梵高《星夜》的艺术风格转移到斯坦福大学校园夜景的照片中的效果:
3. Detectron
star:14,795
代码:https://github.com/facebookresearch/detectron
论文:http://arxiv.org/abs/1703.06870v3
Detectron是Facebook AI Research(FAIR)的物体检测研究平台,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。