赞
踩
本篇博客主要介绍如何在PyTorch中更加快速便捷地搭建神经网络。
示例代码:
- import torch
- from torch.autograd import Variable
- import torch.nn.functional as F
- import matplotlib.pyplot as plt
-
- # 生成假数据
- n_data = torch.ones(100, 2)
- x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2)
- y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1)
- x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2)
- y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1)
- x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating
- y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,) LongTensor = 64-bit integer
-
- # 将Tensor转换为torch
- x, y = Variable(x), Variable(y)
-
- # 打印数据散点图
- # plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, l

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。