赞
踩
目录
检索增强生成(RAG)是一个概念,也可以称为一种范式,它旨在为大语言模型(Large Language Model,LLM)提供额外的、来自外部知识源的信息。
2020 年,Lewis 等人在论文《知识密集型 NLP 任务的检索增强生成》(Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks) 中,提出了一种更为灵活的技术——检索增强生成(Retrieval-Augmented Generation,RAG)。该研究将生成模型与检索模块结合起来,能够从易于更新的外部知识源中获取额外信息。
用一个简单的比喻来说, RAG 对大语言模型的作用,就像开卷考试对学生一样。在开卷考试中,学生可以带着参考资料进场,比如教科书或笔记,用来查找解答问题所需的相关信息。开卷考试的核心在于考察学生的推理能力,而非对具体信息的记忆能力。
在 RAG 中,事实性知识(知识库)与 LLM 的推理能力(模型)相分离,被存储在容易访问和及时更新的外部知识源中,具体分为两种:
仅依靠大模型已经可以完成很多任务,微调(Fine-tune) 也可以起到补充领域知识的作用,为什么 RAG 仍然如此重要呢?
RAG 结合了信息检索和文本生成两种方法,旨在突破传统问答系统的局限。通过将外部数据检索的相关信息输入大语言模型,大语言模型能够基于这些信息生成回答,进而增强答案生成的能力。
RAG 主要有两个核心组件:信息检索和文本生成。
信息检索(Retrieve)的主要任务是在一个大型的知识库或文档集合中搜索与用户提出的问题相关的信息。这个过程类似人在图书馆中查找相关书籍以回答某个问题。通常,这一步骤依赖传统的信息检索技术,如倒排索引、TF-IDF 评分、BM25 算法等,或者采用更现代的基于向量的搜索方法。
文本生成(Generate)的职责是根据检索到的信息生成一个连贯、准确的回答。这个过程可以看作根据收集到的材料撰写一篇简短的文章或回答。这个功能通常采用预训练的生成式语言模型来实现,如 GPT 、LLama系列。仅加载外部文件是不够的。通常,外部文件非常大,而且 Embedding 模型和大语言模型都有长度限制,这时就需要将文件进一步切割成文本块(Chunk),才能精准地进行检索和生成。根据索引方式的不同、模型选择的不同,以及问答文本长度和复杂度的不同,切割的方法也有不同。
检索: 将用户的查询通过嵌入模型转化为向量,以便与向量数据库中的其他上下文信息进行比对。通过这种相似性搜索,可以找到向量数据库中最匹配的前 k 个数据。
增强: 将用户的查询和检索到的额外信息一起嵌入到一个预设的提示模板中。
生成: 最后,这个经过检索增强的提示内容会被输入到大语言模型 (LLM) 中,以生成所需的输出。
在用户提问环节,可以对问题进行进一步的预处理和理解查询。
在实际对话中,用户和系统的交流往往不是一句话,而是多句话,且上下文之间有指代关系。例如,用户说了两句话:
如果系统逐句处理接收的信息,则无法确定句子中的“他”指的是谁。系统需要将两句话结合起来,才能正确理解用户的提问是“张三多大了”。
在这个例子中,除了对问题进行基础的预处理,还有一步重要的操作就是把之前的历史记录输入系统。通用的做法之一是让大语言模型将当前的问题和先前的问题结合,使用 Prompt 引导大语言模型重写用户的问题,这样做可以有效地解决指代消除的问题。
尽管增加了聊天的历史记录,但由于在数据处理环节中系统内切割成的块数量很多,系统检索的维度不一定是最有效的,因此一次检索的结果在相关性上并不理想。这时,需要一些策略对检索的结果进行重新排序,或者重新调整组合相关度、匹配度等因素,使其更适合业务的场景。
对此,通常会设置内部触发器进行自动评审,触发自动重排序的逻辑。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。