赞
踩
之前我们在讲大模型的应用方向和架构时,有提到RAG、Agent、Fine-Tune。在作者写大模型专题的文章时,也是边学习,边梳理,边总结。在这个过程中,大模型在各个方向都不断地快速发展,对应的paper、理论、方向也是不断地涌现出来。
在理论不断发展,实践不断丰富的过程中,我们学习和使用RAG作者个人认为已经不能再单独孤立的去看了:
1.RAG和Fine-Tune都是为了解决LLM的某些问题而出现,我们需要去了解各自的优缺点和使用场景
2.RAG的核心知识以及应用、未来的发展趋势
3.混合增强策略:RAG + Fine-Tuning
所谓RAG,检索增强生成(Retrieval Augmented Generation),简称 RAG,已经成为当前最火热的LLM应用方案。
通俗点说;就是通过自有垂域数据库检索相关信息,然后合并成为提示模板,给大模型生成漂亮的回答。
RAG的出现,是因为在大模型的广泛应用中,伴随着出现的一些问题,比如:
而RAG是解决上述问题的一套有效方案。
RAG = 检索技术 + LLM 提示。例如,我们向 LLM 提问一个问题,RAG 从各种数据源检索相关的信息,并将检索到的信息和问题注入到 LLM 提示中,LLM 最后给出答案。
许多产品基于 RAG 构建,从基于 web 搜索引擎和 LLM 的问答服务到使用私有数据的chat应用程序。
咱们以知识局限性为例,众所周知,GPT-4 Turbo的现实世界知识截止时间现在是2023年9月。(补充一下,经朋友提醒,plus用户更新到了2024.4)。
而小米SU7:2021年3月,小米官宣造车;2021年9月,小米汽车公司正式注册;2022年8月,小米自动驾驶技术视频公布;2023年12月28日,小米汽车召开技术发布会 ;2024年3月28日,小米集团召开XIAOMI SU7上市发布会 ,同年4月3日,XIAOMI SU7正式交付。
然后我们将这个问题让GPT-4 Turbo来回答看看:
我们从数据准备、数据检索、LLM生成三个维度来看一张架构图:
这里简要的描述一下RAG的这个流程,后面会再专门详细讲解。
完整的RAG应用流程主要包含两个阶段:
1.外部知识的利用:RAG 模型可以有效地利用外部知识库,它可以引用大量的信息,以提供更深入、准确且有价值的答案,这提高了生成文本的可靠性。
2.数据更新及时性:RAG 模型具备检索库的更新机制,可以实现知识的即时更新,无需重新训练模型。说明 RAG 模型可以提供与最新信息相关的回答,高度适配要求及时性的应用。
3.回复具有解释性:由于 RAG 模型的答案直接来自检索库,它的回复具有很强的可解释性,减少大模型的幻觉。用户可以核实答案的准确性,从信息来源中获取支持。
4.高度定制能力:RAG 模型可以根据特定领域的知识库和 prompt 进行定制,使其快速具备该领域的能力。说明 RAG 模型广泛适用于的领域和应用,比如虚拟伴侣、虚拟宠物等应用。
5.安全和隐私管理:RAG 模型可以通过限制知识库的权限来实现安全控制,确保敏感信息不被泄露,提高了数据安全性。
6.减少训练成本:RAG 模型在数据上具有很强的可拓展性,可以将大量数据直接更新到知识库,以实现模型的知识更新。这一过程的实现不需要重新训练模型,更经济实惠。
1.问答系统(QA Systems):RAG 可以用于构建强大的问答系统,能够回答用户提出的各种问题。它能够通过检索大规模文档集合来提供准确的答案,无需针对每个问题进行特定训练。
2.文档生成和自动摘要(Document Generation and Automatic Summarization):RAG 可用于自动生成文章段落、文档或自动摘要,基于检索的知识来填充文本,使得生成的内容更具信息价值。
3.智能助手和虚拟代理(Intelligent Assistants and Virtual Agents):RAG 可以用于构建智能助手或虚拟代理,结合聊天记录回答用户的问题、提供信息和执行任务,无需进行特定任务微调。
4.信息检索(Information Retrieval):RAG 可以改进信息检索系统,使其更准确深刻。用户可以提出更具体的查询,不再局限于关键词匹配。
5.知识图谱填充(Knowledge Graph Population):RAG 可以用于填充知识图谱中的实体关系,通过检索文档来识别和添加新的知识点。
RAG技术已超越了最初的文本问答范畴,开始拥抱多样化的模态数据,包括图像、音频、视频和代码。这一扩展催生了创新的多模态模型,如:
图像:RA-CM3和BLIP-2等模型在图像和文本的检索与生成方面取得了突破。
音频和视频:GSS方法和UEOP等技术在音频和视频的检索与生成方面展现了潜力。
代码:RBPS和CoK等方法在代码检索和知识图谱问答任务中表现出色。
RAG技术最初被设计用于文本信息的检索和生成,但其强大的知识增强能力使其在多模态数据领域具有巨大的潜力。随着人工智能技术的发展,对能够处理图像、音频、视频和代码等多种数据类型的系统的需求日益增长。这种需求推动了RAG技术向多模态领域的扩展。
尽管RAG技术已取得显著进展,但仍面临一些挑战,其中包括:
上下文长度限制:LLMs的上下文窗口大小限制了RAG的有效性,需要平衡信息的充分性和处理成本。 鲁棒性:在检索过程中,噪声或矛盾信息的存在可能严重影响RAG的输出质量。 混合方法(RAG+FT):结合RAG和微调(fine-tuning)的策略正在兴起,但如何优化两者的集成方式仍需探索。 LLM角色扩展:LLMs在RAG框架中的作用不仅限于生成最终答案,还包括检索和评估,进一步挖掘LLMs的潜力成为研究的新方向。
综上我们能够看到,未来,RAG技术的发展将集中在以下几个方面:技术优化、多模态融合、生态系统完善
随着RAG技术的不断进步,其在AI领域的应用前景广阔,预计将在学术和工业界引起更多关注。同时,为了确保RAG技术的有效性和实用性,对其评估方法的完善也将成为未来研究的关键方向。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。