当前位置:   article > 正文

目标检测 训练过程 代码_目标检测flowchaet

目标检测flowchaet

目标检测 训练过程 代码


目标检测训练过程主要包括数据预处理、模型构建、损失函数定义、训练循环等步骤。下面是一个基于TensorFlow Object Detection API的目标检测训练代码示例,包含了以上步骤的实现:

import tensorflow as tf
import os
import argparse

from object_detection.utils import config_util
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder

tf.get_logger().setLevel('ERROR')

parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True, help='Path to the directory which contains the model configuration and checkpoints.')
parser.add_argument('--pipeline_config_path', type=str, required=True, help='Path to the pipeline configuration file.')
parser.add_argument('--train_data_path', type=str, required=True, help='Path to the training data directory.')
parser.add_argument('--eval_data_path', type=str, required=True, help='Path to the evaluation data directory.')
parser.add_argument('--num_train_steps', type=int, required=True, help='Number of training steps.')
parser.add_argument('--num_eval_steps', type=int, required=True, help='Number of evaluation steps.')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size.')
parser.add_argument('--num_classes', type=int, default=1, help='Number of classes.')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='Learning rate.')
parser.add_argument('--checkpoint_every_n', type=int, default=1000, help='Save a checkpoint every n steps.')
parser.add_argument('--eval_every_n', type=int, default=1000, help='Run evaluation every n steps.')

args = parser.parse_args()

# Load the pipeline configuration
configs = config_util.get_configs_from_pipeline_file(args.pipeline_config_path)
model_config = configs['model']
train_config = configs['train_config']
eval_config = configs['eval_config']
input_config = configs['train_input_config']

# Load the label map
label_map_path = os.path.join(args.train_data_path, 'label_map.pbtxt')
label_map = label_map_util.load_labelmap(label_map_path)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=args.num_classes, use_display_name=True)

# Define the model
detection_model = model_builder.build(model_config=model_config, is_training=True)

# Define the data input pipeline
dataset = input_config.tf_record_input_reader
files_train = tf.io.gfile.glob(os.path.join(args.train_data_path, '*.record'))
dataset_train = tf.data.TFRecordDataset(files_train)
dataset_train = dataset_train.shuffle(input_config.shuffle_buffer_size)
dataset_train = dataset_train.map(dataset.parser_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset_train = dataset_train.batch(args.batch_size)
dataset_train = dataset_train.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

files_eval = tf.io.gfile.glob(os.path.join(args.eval_data_path, '*.record'))
dataset_eval = tf.data.TFRecordDataset(files_eval)
dataset_eval = dataset_eval.map(dataset.parser_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset_eval = dataset_eval.batch(args.batch_size)

# Define the loss function
@tf.function
def train_step(data):
    images, boxes, classes = data
    with tf.GradientTape() as tape:
        pred = detection_model(images, training=True)
        loss = detection_model.loss(pred, boxes, classes)
        total_loss = tf.reduce_mean(loss['Loss/total_loss'])
    gradients = tape.gradient(total_loss, detection_model.trainable_variables)
    detection_model.optimizer.apply_gradients(zip(gradients, detection_model.trainable_variables))
    return loss

# Define the evaluation function
@tf.function
def eval_step(data):
    images, boxes, classes = data
    pred = detection_model(images, training=False)
    loss = detection_model.loss(pred, boxes, classes)
    return loss

# Define the training loop
ckpt = tf.train.Checkpoint(model=detection_model)
ckpt_manager = tf.train.CheckpointManager(ckpt, args.model_dir, max_to_keep=10)
global_step = tf.Variable(1, dtype=tf.int64)
train_loss = tf.keras.metrics.Mean(name='train_loss')
eval_loss = tf.keras.metrics.Mean(name='eval_loss')

for epoch in range(1, train_config.num_epochs + 1):
    train_loss.reset_states()
    for step, data in enumerate(dataset_train):
        loss = train_step(data)
        train_loss.update_state(loss['Loss/total_loss'])
        global_step.assign_add(1)
        if global_step % args.checkpoint_every_n == 0:
            ckpt_manager.save()
        if global_step % args.eval_every_n == 0:
            eval_loss.reset_states()
            for data_eval in dataset_eval.take(args.num_eval_steps):
                loss_eval = eval_step(data_eval)
                eval_loss.update_state(loss_eval['Loss/total_loss'])
            print('Epoch {} - Step {} - Train Loss {:.4f} - Eval Loss {:.4f}'.format(epoch, 
                                                                                    global_step.numpy(), 
                                                                                    train_loss.result(), 
                                                                                    eval_loss.result()))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100

其中,数据预处理和可视化方法略。上述代码中,通过配置文件获取模型参数和训练参数,加载数据集并定义数据输入管道。通过模型构建器定义目标检测模型,并利用训练集进行训练,同时通过验证集进行模型的评估,最后保存模型。

该博文为原创文章,未经博主同意不得转。本文章博客地址:https://cplusplus.blog.csdn.net/article/details/133968719

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/662773
推荐阅读
相关标签
  

闽ICP备14008679号