当前位置:   article > 正文

水果识别系统python_python 水果识别

python 水果识别

介绍

水果识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对5种垃圾数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。

效果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

演示视频

视频+源码:https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

相关代码


def upload_img(request):
    # 图片上传
    file = request.FILES.get('file')
    file_name = file.name
    file_name = '{}.{}'.format(int(time.time()), str(file_name).rsplit('.')[-1])
    with open(os.path.join(settings.MEDIA_ROOT, file_name), 'wb') as f:
        for chunk in file.chunks():
            f.write(chunk)
    upload_url = request.build_absolute_uri(settings.MEDIA_URL + file_name)
    ImageCheck.objects.create(file_name=file_name, file_url=upload_url)
    return JsonResponse({'code': 200, 'data': {'url': upload_url}})


def check_img(request):
    # 图片检测
    image_url = request.POST.get('img_url')
    if not image_url:
        return JsonResponse({'code': 400, 'message': '缺少必传的参数'})
    image_name = image_url.rsplit('/')[-1]
    image_path = os.path.join(settings.MEDIA_ROOT, image_name)
    pred_name = check_handle(image_path)

    obj = ImageCheck.objects.filter(file_name=image_name).last()
    obj.check_result = pred_name
    obj.save()
    return JsonResponse({'code': 200, 'data': {'pred_name': pred_name}})

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

实现步骤

● 首先收集需要识别的种类数据集
● 然后基于TensorFlow搭建ResNet50卷积神经网络算法模型,并通过多轮迭代训练,最终得到一个精度较高的模型,并将其保存为h5格式的本地文件。
● 基于Django开发网页端可视化操作平台,HTML、CSS、BootStrap等技术搭建前端界面。Django作为后端逻辑处理框架。Ajax实现前后端的数据通信。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/140206
推荐阅读
相关标签
  

闽ICP备14008679号