当前位置:   article > 正文

假设检验(z-test)

z-test

题目:

We’re trying to test whether a new,low-fat diet actually helps obese people lose weight.100 randomly assigned obese people are assigned to group 1 and put on the low fat diet.Another 100 randomly assigned obese people are assigned to group 2 and put on a diet of approximately the same amount of food,but not as low in fat.After 4 months,the mean weight loss was 9.31 lbs. for group 1(s=4.67) and 7.40 lbs.(s=4.04) for group 2.

low-fat: x1¯=9.31 s1=4.67
control: x2¯=7.4 s2=4.04
x1¯x2¯=1.91

对于“sampling distribution of difference of means”
期望:μx1¯x2¯
方差:σx1¯x2¯2
又有公式

σx1¯x2¯2=σx1x22n

其中, σx1x22 为population的variance of difference

置信区间:
以95%的confidence interval为例:
因为是two-tails combine一共占5%,因此,需要在z-table中找到值为2.5%的,此时,z=1.96
此时,置信区间的意义就有了:
我们能说:
95% chance that μx1¯x2¯ is within 1.96σx1¯x2¯2 of 1.91.

接下来的事就是计算σx1¯x2¯2
上面提到的计算这个未知量的公式,此处并不能用,因为并没有一个sample是关于x1x2的,因此,无法用单个sample的s2来作为population的σ2估计,再使用公式推出sampling distribution的σx¯2

而由已知量入手,

σx1¯x2¯2=σx1¯2+σx2¯2=σx1¯2100+σx2¯2100=s12100+s22100σx1¯x2¯=0.617

最后,可以说成:
95% confidence interval for μx1¯x2¯ 1.91 ± 1.21

假设检验:

先设定significance level=5%

null hypothesis: low-fat diet dose nothing.

H0:μ1μ2=0=>μx1¯x2¯=0
H1:μ1μ2>0=>μx1¯x2¯>0

首先,根据z-table找出5%的z值,为1.65

z=σx1¯x2¯

zσx1¯x2¯+0=1.01805<μx1¯x2¯=1.91

因此拒绝假设

(其实分母原始写法为:

s2n

)

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号