赞
踩
湖仓一体作为一种新兴的开放式数据管理架构,能够充分发挥数据湖的灵活性、生态丰富以及数据仓库的企业级数据分析能力,已经成为企业建设现代数据平台的热门选择。
在此前的直播中,我们分享了HashData湖仓一体方案架构设计与Hive数据同步。本次直播,我们介绍了Iceberg、Hudi的特性与支持方案,并对HashData连接组件的原理和实现流程进行了详细的讲解和演示。以下内容根据直播文字整理。
Hudi与Iceberg技术应用场景
在企业数据平台建设过程中,随着数据量的持续增加与场景的丰富,每家企业都会基于自有技术路线和需求,发展出形态各异的架构设计。
数据湖作为一种不断演进、可扩展的大数据存储、处理和分析基础设施,允许企业存储任意规模的结构化和非结构化数据。伴随着云存储(尤其是对象存储)技术逐步成熟,数据湖的解决方案也逐步向云原生靠近,数据处理方式由批处理向流式处理发展。
在这样的背景下,现代数据湖需要具备强大的流批处理能力、高效的数据更新机制、严谨的事务支持以及灵活多变的存储和计算引擎。
面对上述需求,传统的Hive+HDFS架构数据仓库存在数据修改成本高、不支持事务(ACID)、无法实现流批统一、数据分析用时长等“痛点”,无法直接用于建设数据湖。近些年,Hudi和Iceberg等先进的表格式管理技术,凭借开放的文件存储格式、丰富的事务支持以及高效的读取写入等特点,成为企业数据湖建设的主流选型。
Hudi基本术语与写入操作流程
Hudi的诞生是为了解决Hadoop体系内数据更新和增量查询的问题,在数据存储、查询等方面均具有鲜明的特性。
Hudi的文件布局是其实现增量查询、数据更新等特性的基础,每个Hudi表有一个固定的目录,存放元数据(.hoodie)以及数据文件,其中数据文件以分区方式进行划分,每个分区有多个数据文件(基础文件和日志文件),这些数据文件在逻辑上被组织为文件和文件组。
可以理解为Hudi表的一个时间线,记录了Hudi表在不同时刻的操作,并保证操作的原子性。Timeline包含action、time、state三个字段。
Hudi提供了两种表类型,分别为Copy-On-Write(COW表)和Merge-On-Read(MOR表):
Hudi支持三种查询类型,分别为Snapshot Query、Read Optimized Query、Incremental Query:
在Hudi数据湖框架中支持三种方式写入数据:Upsert、Insert以及Bulk-Insert。其中,Upsert为默认行为,也是Hudi的核心功能。
图1:Spark写入Hudi操作流程示意图
如图1所示,Spark写入Hudi,Upsert执行核心操作如下:
lceberg基本术语与写入操作流程
Iceberg的官网定位是“面向海量数据分析场景的高效存储格式”,所以它没有像Hudi一样模拟业务数据库的设计模式(主键+索引)来实现数据更新,而是设计了更强大的文件组织形式来实现数据的Update操作。
数据文件是Apache Iceberg表真实存储数据的文件,一般是在表的数据存储目录的data目录下,如果我们的文件格式选择的是parquet,那么文件是以“.parquet”结尾,Iceberg每次更新会产生多个数据文件。
快照代表一张表在某个时刻的状态,每个快照里面会列出表在某个时刻的所有Data files 列表。Data files存储在不同的Manifest files里面,Manifest files存储在一个Manifest list文件里面,而一个Manifest list文件代表一个快照。
Manifest file是一个元数据文件,它列出组成快照(Snapshot)的数据文件(Data files)的列表信息。每行都是每个数据文件的详细描述,包括数据文件的状态、文件路径、分区信息、列级别的统计信息(比如每列的最大最小值、空值数等)、文件的大小以及文件里面数据行数等信息。其中,列级别的统计信息可以在扫描表数据时过滤掉不必要的文件。Manifest file是以avro格式进行存储的,以“.avro”后缀结尾。
Manifest list也是一个元数据文件,它列出构建表快照(Snapshot)的清单。这个元数据文件中存储的是Manifest file列表,每个Manifest file占据一行。每行中存储了Manifest file的路径、其存储的数据文件(Data files)的分区范围,增加了几个数文件、删除了几个数据文件等信息,这些信息可以用来在查询时提供过滤,加快速度。
图2:Iceberg写入流程示意图
在向Iceberg写入数据时,其内部的工作流程可以概括为以下几个步骤:
Hashdata连接器工作原理及实现流程
数据湖中的数据通常未经组织或处理,直接分析的效率受限。HashData通过自研Hudi、Iceberg连接器,实现了与这两种架构的流畅集成。HashData目前对于Hudi、Iceberg支持Readonly表,不支持Write。
图3:HashData连接器工作原理示意图
如上图所示,HashData连接组件通过创建外部表的方式读取Hudi、Iceberg数据,进一步对湖内数据进行分析使用。
创建外部表
上述步骤,都是通过连接组件完成,相当于把表的Path、Catalogtype等信息打包传给连接器。连接器在获取相关表信息后再传递回来,HashData把传回的信息mapping为可读外部表。
结语
Hudi、Iceberg作为当前主流的数据湖方案,受到广泛青睐。HashData“湖仓一体”技术方案,打通了数据仓库和数据湖,底层支持多种数据类型并存,能够真正实现数据间的相互共享,上层可以通过统一封装的接口进行访问,可同时支持实时查询和分析,为企业在数据湖架构下的数据治理与使用带来了更多的便利。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。