赞
踩
编者按:相信很多人都对Chatbots背后的技术原理很感兴趣,其实Chatbots并非通过“魔法”与我们交流,而是依靠一种被称为检索增强生成(RAG)的技术。
文章详细梳理了 RAG 技术的具体实现原理。首先,RAG 将用户输入的问题与知识库中的私有数据进行匹配,获取相关知识片段。然后,通过预训练的大语言模型,用提取到的知识片段来增强对问题的回答生成过程。在知识提取步骤,借助词向量的相似度找到与用户提出的问题最匹配的内容。生成回答时,直接向语言模型提供增强知识来指导其产出更符合语境的回答。
RAG 技术看似神奇,但其本质是结合了检索和生成两个子任务的一种系统工程,而每个子任务又都有明确的技术原理支撑。作为 AI 开发者,理解这一工作流程尤为重要。相信本文有助于读者进一步掌握 RAG 的技术原理,从而更好地运用 Chatbots 为用户创造更多价值。
以下是译文,enjoy!
作者 | Cory Zue
编译 | 岳扬
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。