赞
踩
tensorflow 2.x
一是 可以转换为 指向模块压缩文件TGZ的URL。重点是,https://storage.googleapis.com可在公网访问。
https://storage.googleapis.com/tfhub-modules/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1.tar.gz
二是 可以下载解压到本地文件系统(云端文件系统),直接加载
以下是工作代码
- print("=========Load Remote hub model:hub.KerasLayer =============")
- #tfhub_bert="https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1"
- #tfhub_bert="https://storage.googleapis.com/tfhub-modules/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/1.tar.gz"
- #bert_layer = hub.KerasLayer(tfhub_bert,trainable=False)
- print("=========Load Remote hub model:hub.KerasLayer, success!=============")
-
- print("=========Load local hub model:hub.KerasLayer =============")
- model_dir="C:\\bert\\small_bert_bert_en_uncased_L-2_H-128_A-2_1\\"
- bert_layer = hub.KerasLayer(model_dir,trainable=False)
- print("=========Load local hub model:hub.KerasLayer, success!=============")
官方文档:
hub 加载函数
hub.load( handle, tags=None, options=None)
hub.resolve(handle)
hub.KerasLayer(
handle, trainable=False, arguments=None, _sentinel=None, tags=None,
signature=None, signature_outputs_as_dict=None, output_key=None,
output_shape=None, load_options=None, **kwargs
)
1)托管的URL。 Smart URL resolvers such as tfhub.dev, e.g.: https://tfhub.dev/google/nnlm-en-dim128/1.
2) 本地或云端文件系统目录。A directory on a file system supported by Tensorflow containing module files.
This may include a local directory (e.g. /usr/local/mymodule) or a Google Cloud Storage bucket (gs://mymodule).
3) URL指向TGZ模块压缩文件。A URL pointing to a TGZ archive of a module, e.g. https://example.com/mymodule.tar.gz.
参考:https://www.tensorflow.org/hub/api_docs/python/hub
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。