赞
踩
点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
本文来源:公众号@点云PCL,原文:CloudCompare的介绍
CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能【1】。此外,由于大多数点云都是由地面激光扫描仪采集的,CloudCompare的目的是在一台标准笔记本电脑上处理大规模的点云——通常超过1000万个点云。在2005年后,cloudcompare就实现了点云和三角形网格之间的比较。随后,许多其他点云处理算法(配准、重采样、颜色/法线向量/尺度、统计计算、传感器管理、交互式或自动分割等)以及显示增强工具(自定义颜色渐变、颜色和法向量处理,校准图像处理、OpenGL着色器、插件等)
例如在一台带有双核处理器的笔记本电脑上,计算出300万个点到14000个三角形网格的距离需要10秒(笔者理解:这里是指点云到模型的配准,出现的误差通过颜色的不同可视化出差别)
点云与网格
由于CloudCompare的特定历史,该软件几乎将所有的三维实体都视为点云数据进行处理。通常,三角形网格只是一个具有关联拓扑的点云(网格顶点 the mesh vertices)(与每个三角形对应的“连接”点的三元组)。这解释了网格始终有一个名为“顶点”的点云作为同级或父级(取决于加载或生成它们的方式)。虽然CloudCompare允许用户直接在网格结构(即三角化点云)上应用一些工具,但有些工具只能应用于网格顶点。一开始可能有点令人难以理解,但我们不希望用户忽略这一点:CloudCompare主要是一个点云处理软件。当然,由于CloudCompare的目的是进行变化检测(例如形变监测),而且三角形网格是表示参考形状(例如建筑物)的一种非常常见的方法,因此它非常有用,不能忽视。尽管如此,处理网格点云仍然是一个“次要”实例,尤其是CloudCompare能够直接比较两个点云,而不需要生成中间网格。
主要原因是:
三角化网格通常很难在真实场景中正确生成,尤其是在使用激光扫描仪(噪声、可变密度等)扫描时
由于ALS/TLS点云通常非常密集(且准确),我们已经拥有了所需的所有信息。
(笔者理解:这里说明了cloudcompare的定位是一款处理点云的软件,尽管能处理mesh数据,但是也只能处理mesh数据中顶点的点,并且是一款用于检测形变的点云处理软件)
CloudCompare技术上的优势
便携性
CloudCompare是在C++中开发的。它目前是在Windows、Linux和Mac操作系统上编译(感谢CMake)32位和64位体系结构。
在存储和速度之间进行权衡
以下是关于CloudCompare中所做技术选择的一些细节(主要是为了实现加载尽可能多的点而不降低太多性能的目标,即在存储和速度之间进行良好的权衡)
所有存储值和大部分计算都使用32位浮点值完成
防止对数组大小的任何限制(因为在32 位Windows上很难获得大的连续内存块),我们使用一个自定义容器,自动将数据集分块成小块(每个块64KB)。
法向量(如果有)压缩到16位(实际上是15位,因为量化1的工作方式)
CloudCompare中使用的特定八叉树结构需要恒定的每点内存(即在32位操作系统上,每点8个字节—最大深度为10—在64位操作系统上为12个字节—最大深度为21!)。它基于三维点坐标的特定量化-一种Morton【2】排序方案-其中每个点在八叉树网格和任何级别上的位置都由单个整数代码表示。然后我们处理这些代码以实现非常高效的最近邻查询操作。然而,尽管这种八叉树结构对于计算距离非常有效,但它不适合快速显示( Level Of Detail (LOD) 等)
基于以上平衡选择的结果是CloudCompare每GB内存可以存储大约9000万个空白点(只含有XYZ的意思)。如果添加RGB颜色、法线向量、单个尺度字段,并且需要计算八叉树,则每GB最多可以加载3200万个点。在一个64位操作系统上,你可以加载任意多个点(事实上多达40亿)。但是,根据您的显卡功能,显示和交互性可能会因为这许多点而严重降低)。有了高端显卡,你可以保持一个合理的帧速率高达1.5亿个点。
参考文献
1 http://en.wikipedia.org/wiki/Quantization
2 http://en.wikipedia.org/wiki/Z-order_curve
最近的进展
虽然该项目已于2004年在EDF研发部启动,但直到2009年左右才在公共领域发布(根据GPL许可)。由于CloudCompare是开源项目,所以每个人都可以免费(也欢迎)扩展其功能。请不吝于提问和分享您的经验在论坛里【3】,并查看Github源代码【4】。
许可证
CCLib库(包含核心算法)的许可证是LGPL【5】版本2.0。
因此,CCLib可以集成到任何商业或非商业项目中。你只要和别人分享,就可以和作者一起修改代码。
其他组件的许可证为GPL【6】(2.0版):
•qCC_db(数据库)
•qCC_io(文件I/O库)
•qCC_gl(基于OpenGL的3D显示库)
•CloudCompare和ccViewer(独立应用程序)
因此,只有与GPL兼容(即开源但不一定意味着免费)的项目可以使用这些组件。
最新版本的用户文档可在以下网址找到:
http://www.cloudcompare.org/doc/wiki/参考文献
3 http://www.cloudcompare.org/forum
4 https://github.com/cloudcompare/trunk
5 http://www.gnu.org/licenses/lgpl-2.0.html
6 http://www.gnu.org/licenses/gpl-2.0.html
本文仅做学术分享,如有侵权,请联系删文。
下载1
在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2
在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。
下载3
在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。