当前位置:   article > 正文

【深度学习】AIGC ,ControlNet 论文,原理,训练,部署,实战,教程(三)_aigc预训练模型

aigc预训练模型

第一篇:https://qq742971636.blog.csdn.net/article/details/131531168

源码资源下载

目前 ControlNet 1.1 还在建设,本文这里使用源码 https://github.com/lllyasviel/ControlNet/tree/main

此外还需要下载模型文件:https://huggingface.co/lllyasviel/ControlNet

发布在huggingface了,如何下载huggingface的模型文件,使用指令:

$ git lfs install
$ git clone https://huggingface.co/lllyasviel/ControlNet
  • 1
  • 2

详细log:

$ git lfs install
Git LFS initialized.

kevin@DESKTOP-J33EKGT MINGW64 /f
$ git clone https://huggingface.co/lllyasviel/ControlNet
Cloning into 'ControlNet'...
remote: Enumerating objects: 52, done.
remote: Counting objects: 100% (52/52), done.
remote: Compressing objects: 100% (33/33), done.
remote: Total 52 (delta 16), reused 52 (delta 16), pack-reused 0
Unpacking objects: 100% (52/52), 7.06 KiB | 141.00 KiB/s, done.

Filtering content: 100% (16/16), 11.80 GiB | 6.47 MiB/s, done.
Encountered 8 file(s) that may not have been copied correctly on Windows:
        models/control_sd15_seg.pth
        models/control_sd15_hed.pth
        models/control_sd15_normal.pth
        models/control_sd15_canny.pth
        models/control_sd15_scribble.pth
        models/control_sd15_mlsd.pth
        models/control_sd15_depth.pth
        models/control_sd15_openpose.pth

See: `git lfs help smudge` for more details.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

Windows 的Git不能超过4GB,已知的BUG。所以这八个文件直接点下载吧,或者用Linux的Git去下载。

最终整个工程如下:
在这里插入图片描述

Python环境

用aliyun镜像才能安装完。这里先安装了一下diffusers。

conda create -n py38_diffusers python=3.8 -y
conda activate py38_diffusers
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge -y
cd diffusers-main/
pip install -e .
cd examples/
cd controlnet/
pip install -r requirements.txt
accelerate config default

cd /ssd/xiedong/workplace/ControlNet

pip install  tb-nightly -i https://mirrors.aliyun.com/pypi/simple  # 用aliyun镜像才能安装完
pip install -r req.txt  # 用清华镜像快一些

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

req.txt 如下:

gradio==3.16.2
albumentations==1.3.0
opencv-python
opencv-contrib-python==4.3.0.36
imageio==2.9.0
imageio-ffmpeg==0.4.2
pytorch-lightning==1.5.0
omegaconf==2.1.1
test-tube>=0.7.5
streamlit==1.12.1
einops==0.3.0
transformers==4.19.2
webdataset==0.2.5
kornia==0.6
open_clip_torch==2.0.2
invisible-watermark>=0.1.5
streamlit-drawable-canvas==0.8.0
torchmetrics==0.6.0
timm==0.6.12
addict==2.4.0
yapf==0.32.0
prettytable==3.6.0
safetensors==0.2.7
basicsr==1.4.2

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

可以选择性安装:

pip install xformers
  • 1

试玩controlnet

执行:

python gradio_scribble2image_interactive.py
  • 1

网络问题,可能一些脚本会有问题,我这里没问题:

在这里插入图片描述

访问http://127.0.0.1:7860/,可以得到:

在这里插入图片描述
执行过程:
在这里插入图片描述
gpu显存占用:8847MiB

训练

数据准备

我的数据是准备训练scribble:

fake_image2scribble.py

from share import *
import config
import os

os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random

from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.hed import HEDdetector, nms
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler

apply_hed = HEDdetector()


def image2hed(input_image):
    input_image = HWC3(input_image)
    detected_map = apply_hed(resize_image(input_image, 512))
    detected_map = HWC3(detected_map)
    img = resize_image(input_image, 512)
    H, W, C = img.shape

    detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
    detected_map = nms(detected_map, 127, 3.0)
    detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
    detected_map[detected_map > 4] = 255
    detected_map[detected_map < 255] = 0
    hed_result = 255 - detected_map
    return hed_result


if __name__ == "__main__":
    target = r'/ssd/xiedong/datasets/back_img_nohaveback'
    save_img = r'/ssd/xiedong/datasets/back_img_nohaveback_scribble'
    if not os.path.exists(save_img):
        os.makedirs(save_img)
    for i in os.listdir(target):
        img = cv2.imread(os.path.join(target, i))
        hed_result = image2hed(img)
        cv2.imwrite(os.path.join(save_img, i), hed_result)

    print("done")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

官网教程示意图如下,我这里准备用scribble作为source image,Prompt我也自己准备了。

在这里插入图片描述

官网的训练教程:
https://github.com/lllyasviel/ControlNet/blob/main/docs/train.md
官网的数据 fill50k数据:
https://huggingface.co/datasets/fusing/fill50k

无所谓,最终搞个json出来:

在这里插入图片描述
再写个dataset loader:

import json
import cv2
import numpy as np

from torch.utils.data import Dataset


class MyDataset(Dataset):
    def __init__(self):
        self.data = []
        with open('./prompt.json', 'r') as f:
            self.data = json.load(f)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]

        source_filename = item['source']
        target_filename = item['target']
        prompt = item['prompt']

        source = cv2.imread(source_filename)
        target = cv2.imread(target_filename)

        # Do not forget that OpenCV read images in BGR order.
        source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB)
        target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)

        # Normalize source images to [0, 1].
        source = source.astype(np.float32) / 255.0

        # Normalize target images to [-1, 1].
        target = (target.astype(np.float32) / 127.5) - 1.0

        return dict(jpg=target, txt=prompt, hint=source)


if __name__ == '__main__':
    # 打印第一个
    dataset = MyDataset()
    print(dataset[0])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

选一个Stable diffusion模型

Then you need to decide which Stable Diffusion Model you want to control. In this example, we will just use standard SD1.5. You can download it from the official page of Stability. You want the file “v1-5-pruned.ckpt”.

(Or “v2-1_512-ema-pruned.ckpt” if you are using SD2.)

然后你需要连接一个控制网到SD模型。架构是

在这里插入图片描述
请注意,ControlNet内的所有权重也都是从SD复制的,因此没有任何层是从头开始训练的,并且您仍在微调整个模型。

我们为您提供了一个简单的脚本来轻松实现这一点。如果您的SD文件名为“./models/v1-5-pruned.ckpt”,并且您希望脚本将处理后的模型(SD+ControlNet)保存在位置“./models/control_sd15_ini.ckpt”,您只需运行:

【国内网络环境问题,可能要执行很多次,最快的解决办法我想你知道的。】
【./.cache/huggingface/hub/models–openai–clip-vit-large-patch14/snapshots/8d052a0f05efbaefbc9e8786ba291cfdf93e5bff/pytorch_model.bin】

python tool_add_control.py ./models/v1-5-pruned.ckpt ./models/control_sd15_ini.ckpt
  • 1

Or if you are using SD2:

python tool_add_control_sd21.py ./models/v2-1_512-ema-pruned.ckpt ./models/control_sd21_ini.ckpt
  • 1

This is the correct output from my machine:

(py38_diffusers) gpu16: /ssd/xiedong/workplace/ControlNet $ python tool_add_control.py ./models/v1-5-pruned.ckpt ./models/control_sd15_ini.ckpt
logging improved.
No module 'xformers'. Proceeding without it.
ControlLDM: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Loaded model config from [./models/cldm_v15.yaml]
These weights are newly added: logvar
These weights are newly added: control_model.zero_convs.0.0.weight
These weights are newly added: control_model.zero_convs.0.0.bias
These weights are newly added: control_model.zero_convs.1.0.weight
These weights are newly added: control_model.zero_convs.1.0.bias
These weights are newly added: control_model.zero_convs.2.0.weight
These weights are newly added: control_model.zero_convs.2.0.bias
These weights are newly added: control_model.zero_convs.3.0.weight
These weights are newly added: control_model.zero_convs.3.0.bias
These weights are newly added: control_model.zero_convs.4.0.weight
These weights are newly added: control_model.zero_convs.4.0.bias
These weights are newly added: control_model.zero_convs.5.0.weight
These weights are newly added: control_model.zero_convs.5.0.bias
These weights are newly added: control_model.zero_convs.6.0.weight
These weights are newly added: control_model.zero_convs.6.0.bias
These weights are newly added: control_model.zero_convs.7.0.weight
These weights are newly added: control_model.zero_convs.7.0.bias
These weights are newly added: control_model.zero_convs.8.0.weight
These weights are newly added: control_model.zero_convs.8.0.bias
These weights are newly added: control_model.zero_convs.9.0.weight
These weights are newly added: control_model.zero_convs.9.0.bias
These weights are newly added: control_model.zero_convs.10.0.weight
These weights are newly added: control_model.zero_convs.10.0.bias
These weights are newly added: control_model.zero_convs.11.0.weight
These weights are newly added: control_model.zero_convs.11.0.bias
These weights are newly added: control_model.input_hint_block.0.weight
These weights are newly added: control_model.input_hint_block.0.bias
These weights are newly added: control_model.input_hint_block.2.weight
These weights are newly added: control_model.input_hint_block.2.bias
These weights are newly added: control_model.input_hint_block.4.weight
These weights are newly added: control_model.input_hint_block.4.bias
These weights are newly added: control_model.input_hint_block.6.weight
These weights are newly added: control_model.input_hint_block.6.bias
These weights are newly added: control_model.input_hint_block.8.weight
These weights are newly added: control_model.input_hint_block.8.bias
These weights are newly added: control_model.input_hint_block.10.weight
These weights are newly added: control_model.input_hint_block.10.bias
These weights are newly added: control_model.input_hint_block.12.weight
These weights are newly added: control_model.input_hint_block.12.bias
These weights are newly added: control_model.input_hint_block.14.weight
These weights are newly added: control_model.input_hint_block.14.bias
These weights are newly added: control_model.middle_block_out.0.weight
These weights are newly added: control_model.middle_block_out.0.bias
Done.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

开始训练

代码很简单,超参几乎都在./models/cldm_v15.yaml。

import pytorch_lightning as pl
from torch.utils.data import DataLoader
from scribble_datasets_en import MyDataset
from cldm.logger import ImageLogger
from cldm.model import create_model, load_state_dict


# Configs
resume_path = './models/control_sd15_ini.ckpt'
batch_size = 4
logger_freq = 300
learning_rate = 1e-5
sd_locked = True
only_mid_control = False


# First use cpu to load models. Pytorch Lightning will automatically move it to GPUs.
model = create_model('./models/cldm_v15.yaml').cpu()
model.load_state_dict(load_state_dict(resume_path, location='cpu'))
model.learning_rate = learning_rate
model.sd_locked = sd_locked
model.only_mid_control = only_mid_control


# Misc
dataset = MyDataset()
dataloader = DataLoader(dataset, num_workers=1, batch_size=batch_size, shuffle=True)
logger = ImageLogger(batch_frequency=logger_freq)
trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger])


# Train!
trainer.fit(model, dataloader)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

此外:
sd_locked = True
only_mid_control = False
在这里插入图片描述
在这里插入图片描述
训练开始

ControlNet$ python train_scribble_en.py
No module 'xformers'. Proceeding without it.
ControlLDM: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Some weights of the model checkpoint at openai/clip-vit-large-patch14 were not used when initializing CLIPTextModel: ['vision_model.encoder.layers.6.self_attn.vweight', 'vision_model.encoder.layers.21.layer_norm1.bias', 'vision_model.encoder.layers.17.self_attn.v_proj.weight', 'vision_model.encoder.layers.3.layer_norm1, 'vision_model.encoder.layers.7.mlp.fc2.weight', 'vision_model.encoder.layers.6.mlp.fc1.bias', 'vision_model.encoder.layers.16.mlp.fc1.weight', 'vision_model.engs.position_ids', 'vision_model.encoder.layers.16.self_attn.out_proj.weight', 'vision_model.encoder.layers.10.layer_norm1.bias', 'vision_model.encoder.layers.1fc2.weight', 'vision_model.encoder.layers.17.self_attn.q_proj.weight', 'vision_model.encoder.layers.9.mlp.fc2.weight', 'vision_model.encoder.layers.10.mlp.fc1.b'vision_model.encoder.layers.3.self_attn.out_proj.bias', 'vision_model.encoder.layers.5.mlp.fc2.weight', 'vision_model.encoder.layers.23.layer_norm1.weight', 'vmodel.encoder.layers.16.self_attn.k_proj.weight', 'vision_model.encoder.layers.16.self_attn.q_proj.weight', 'vision_model.encoder.layers.21.self_attn.out_proj.b'vision_model.encoder.layers.12.layer_norm2.weight', 'vision_model.encoder.layers.23.layer_norm2.weight', 'vision_model.encoder.layers.13.self_attn.k_proj.bias'ion_model.encoder.layers.3.layer_norm2.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.bias', 'vision_model.encoder.layers.2.layer_norm1.weight', 'visdel.encoder.layers.15.layer_norm2.bias', 'vision_model.encoder.layers.9.mlp.fc1.bias', 'vision_model.encoder.layers.12.self_attn.v_proj.weight', 'vision_model.e.layers.22.layer_norm2.weight', 'vision_model.encoder.layers.14.self_attn.q_proj.weight', 'vision_model.encoder.layers.13.self_attn.out_proj.weight', 'vision_mocoder.layers.9.layer_norm1.weight', 'vision_model.encoder.layers.12.layer_norm1.weight', 'vision_model.encoder.layers.14.self_attn.v_proj.weight', 'vision_modeler.layers.6.mlp.fc2.weight', 'vision_model.encoder.layers.15.self_attn.k_proj.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.weight', 'vision_model.e.layers.4.self_attn.out_proj.bias', 'vision_model.encoder.layers.0.mlp.fc1.bias', 'vision_model.encoder.layers.14.mlp.fc2.bias', 'vision_model.encoder.layers.16attn.q_proj.bias', 'vision_model.encoder.layers.12.self_attn.v_proj.bias', 'vision_model.encoder.layers.13.layer_norm1.weight', 'vision_model.encoder.layers.8.m.weight', 'vision_model.encoder.layers.8.mlp.fc1.bias', 'vision_model.encoder.layers.0.mlp.fc1.weight', 'vision_model.encoder.layers.9.layer_norm2.weight', 'visdel.encoder.layers.9.self_attn.q_proj.weight', 'vision_model.encoder.layers.10.self_attn.out_proj.bias', 'vision_model.encoder.layers.2.layer_norm1.bias', 'visiel.encoder.layers.6.layer_norm2.weight', 'vision_model.encoder.layers.8.self_attn.v_proj.bias', 'vision_model.post_layernorm.bias', 'vision_model.encoder.layersf_attn.out_proj.weight', 'vision_model.encoder.layers.20.layer_norm1.weight', 'vision_model.pre_layrnorm.bias', 'vision_model.encoder.layers.5.self_attn.out_pro', 'vision_model.encoder.layers.16.layer_norm1.bias', 'vision_model.encoder.layers.21.layer_norm1.weight', 'vision_model.encoder.layers.18.self_attn.q_proj.biassion_model.encoder.layers.5.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.self_attn.k_proj.bias', 'vision_model.encoder.layers.16.mlp.fc2.weight', 'vmodel.encoder.layers.9.layer_norm1.bias', 'vision_model.encoder.layers.7.self_attn.out_proj.weight', 'vision_model.encoder.layers.20.self_attn.out_proj.weight',on_model.encoder.layers.22.mlp.fc2.weight', 'vision_model.encoder.layers.3.self_attn.out_proj.weight', 'vision_model.encoder.layers.22.layer_norm2.bias', 'visiol.encoder.layers.18.self_attn.out_proj.bias', 'vision_model.encoder.layers.1.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.self_attn.v_proj.weight',on_model.encoder.layers.22.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.bias', 'vision_model.encoder.layers.23.self_attn.v_proj.we 'vision_model.encoder.layers.2.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.self_attn.q_proj.bias', 'vision_model.encoder.layers.16.self_attn.v_proht', 'vision_model.encoder.layers.3.mlp.fc1.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.bias', 'vision_model.encoder.layers.13.self_attn.v_proj.bivision_model.encoder.layers.8.self_attn.q_proj.weight', 'vision_model.encoder.layers.21.mlp.fc1.weight', 'vision_model.encoder.layers.7.layer_norm2.weight', 'viodel.encoder.layers.7.layer_norm2.bias', 'vision_model.encoder.layers.1.self_attn.k_proj.weight', 'vision_model.encoder.layers.22.self_attn.q_proj.weight', 'visdel.encoder.layers.22.self_attn.v_proj.weight', 'vision_model.encoder.layers.8.layer_norm1.bias', 'vision_model.encoder.layers.1.self_attn.v_proj.weight', 'visiel.encoder.layers.8.self_attn.k_proj.bias', 'vision_model.encoder.layers.22.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.layer_norm1.weight', 'vision_encoder.layers.3.mlp.fc1.bias', 'vision_model.encoder.layers.8.layer_norm2.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.weight', 'vision_model.enlayers.7.mlp.fc2.bias', 'vision_model.encoder.layers.21.self_attn.v_proj.bias', 'vision_model.encoder.layers.11.self_attn.k_proj.weight', 'vision_model.encoder..20.self_attn.k_proj.bias', 'vision_model.encoder.layers.23.mlp.fc1.bias', 'vision_model.embeddings.class_embedding', 'vision_model.encoder.layers.15.self_attn..bias', 'vision_model.encoder.layers.15.layer_norm1.bias', 'vision_model.encoder.layers.16.mlp.fc2.bias', 'vision_model.encoder.layers.7.mlp.fc1.weight', 'visiol.encoder.layers.14.self_attn.k_proj.weight', 'vision_model.encoder.layers.3.layer_norm2.bias', 'vision_model.encoder.layers.4.self_attn.q_proj.weight', 'vision.encoder.layers.11.mlp.fc1.bias', 'vision_model.encoder.layers.9.mlp.fc1.weight', 'vision_model.encoder.layers.19.mlp.fc2.bias', 'vision_model.encoder.layers.10attn.out_proj.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.weight', 'vision_model.encoder.layers.21.mlp.fc2.bias', 'vision_model.encoder.layers.2fc1.weight', 'vision_model.encoder.layers.1.layer_norm1.bias', 'vision_model.encoder.layers.14.self_attn.k_proj.bias', 'vision_model.encoder.layers.6.self_attn.oj.weight', 'vision_model.encoder.layers.6.mlp.fc1.weight', 'vision_model.encoder.layers.21.layer_norm2.bias', 'vision_model.encoder.layers.0.self_attn.v_proj.w, 'vision_model.encoder.layers.11.self_attn.k_proj.bias', 'vision_model.encoder.layers.12.mlp.fc1.weight', 'vision_model.encoder.layers.15.mlp.fc1.bias', 'visuaection.weight', 'vision_model.encoder.layers.2.self_attn.q_proj.bias', 'vision_model.encoder.layers.16.self_attn.out_proj.bias', 'vision_model.encoder.layers.23attn.k_proj.bias', 'vision_model.encoder.layers.23.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.self_attn.k_proj.bias', 'vision_model.encoder.layerp.fc2.bias', 'vision_model.encoder.layers.10.layer_norm1.weight', 'vision_model.encoder.layers.22.layer_norm1.bias', 'vision_model.encoder.layers.1.self_attn.ou.weight', 'vision_model.encoder.layers.5.self_attn.v_proj.bias', 'vision_model.encoder.layers.12.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.self_aproj.weight', 'vision_model.encoder.layers.22.self_attn.q_proj.bias', 'vision_model.encoder.layers.18.mlp.fc2.weight', 'vision_model.encoder.layers.16.layer_norght', 'vision_model.encoder.layers.17.layer_norm1.bias', 'vision_model.encoder.layers.11.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.self_attn.q_pas', 'vision_model.encoder.layers.21.self_attn.v_proj.weight', 'vision_model.encoder.layers.20.self_attn.k_proj.weight', 'vision_model.encoder.layers.18.self_atroj.bias', 'vision_model.encoder.layers.6.self_attn.v_proj.bias', 'vision_model.encoder.layers.10.self_attn.v_proj.bias', 'vision_model.encoder.layers.7.layer_nias', 'vision_model.encoder.layers.17.self_attn.k_proj.bias', 'vision_model.encoder.layers.0.self_attn.out_proj.weight', 'vision_model.encoder.layers.7.layer_noight', 'vision_model.encoder.layers.13.layer_norm2.weight', 'vision_model.encoder.layers.14.self_attn.out_proj.bias', 'vision_model.encoder.layers.18.self_attn..weight', 'vision_model.encoder.layers.0.layer_norm2.bias', 'vision_model.encoder.layers.13.self_attn.k_proj.weight', 'vision_model.encoder.layers.0.self_attn.oj.bias', 'vision_model.encoder.layers.15.self_attn.q_proj.weight', 'vision_model.encoder.layers.14.layer_norm1.weight', 'vision_model.encoder.layers.8.self_attnj.bias', 'vision_model.encoder.layers.23.self_attn.k_proj.weight', 'vision_model.encoder.layers.13.mlp.fc1.weight', 'vision_model.encoder.layers.2.mlp.fc2.bias'ion_model.encoder.layers.19.self_attn.k_proj.weight', 'vision_model.encoder.layers.19.mlp.fc1.bias', 'vision_model.encoder.layers.4.self_attn.v_proj.bias', 'visdel.encoder.layers.10.self_attn.v_proj.weight', 'vision_model.encoder.layers.17.self_attn.k_proj.weight', 'vision_model.encoder.layers.0.self_attn.k_proj.bias',on_model.encoder.layers.23.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.layer_norm1.bias', 'vision_model.encoder.layers.11.self_attn.v_proj.weight', '_model.encoder.layers.19.self_attn.v_proj.bias', 'vision_model.encoder.layers.22.mlp.fc2.bias', 'vision_model.encoder.layers.23.layer_norm1.bias', 'vision_modeler.layers.20.layer_norm2.weight', 'vision_model.encoder.layers.14.self_attn.out_proj.weight', 'vision_model.encoder.layers.19.layer_norm2.weight', 'vision_modeler.layers.6.self_attn.q_proj.bias', 'vision_model.encoder.layers.4.mlp.fc1.bias', 'vision_model.post_layernorm.weight', 'vision_model.encoder.layers.8.self_attnj.weight', 'vision_model.encoder.layers.22.self_attn.out_proj.weight', 'vision_model.encoder.layers.16.self_attn.v_proj.bias', 'vision_model.encoder.layers.4.mlweight', 'vision_model.embeddings.patch_embedding.weight', 'vision_model.encoder.layers.10.mlp.fc2.bias', 'vision_model.encoder.layers.18.mlp.fc2.bias', 'vision.encoder.layers.7.self_attn.q_proj.bias', 'vision_model.encoder.layers.2.mlp.fc1.weight', 'vision_model.encoder.layers.23.self_attn.q_proj.weight', 'vision_modeder.layers.23.self_attn.q_proj.bias', 'vision_model.encoder.layers.4.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.mlp.fc1.weight', 'vision_model.enlayers.12.self_attn.q_proj.bias', 'vision_model.encoder.layers.8.self_attn.out_proj.weight', 'vision_model.encoder.layers.18.mlp.fc1.weight', 'vision_model.encoyers.8.self_attn.out_proj.bias', 'vision_model.encoder.layers.19.layer_norm2.bias', 'vision_model.encoder.layers.21.mlp.fc1.bias', 'vision_model.encoder.layers.fc2.weight', 'vision_model.encoder.layers.18.layer_norm1.bias', 'vision_model.encoder.layers.4.mlp.fc2.bias', 'vision_model.encoder.layers.4.mlp.fc2.weight', 'vmodel.encoder.layers.6.layer_norm1.weight', 'vision_model.encoder.layers.11.layer_norm1.weight', 'vision_model.encoder.layers.2.layer_norm2.bias', 'vision_modeler.layers.14.layer_norm2.bias', 'vision_model.encoder.layers.15.mlp.fc2.weight', 'vision_model.encoder.layers.17.self_attn.out_proj.bias', 'vision_model.encoders.21.self_attn.out_proj.weight', 'vision_model.encoder.layers.11.mlp.fc1.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.weight', 'vision_model.encoders.0.self_attn.q_proj.bias', 'vision_model.encoder.layers.23.self_attn.out_proj.weight', 'vision_model.encoder.layers.5.self_attn.k_proj.bias', 'vision_model.enlayers.13.layer_norm2.bias', 'vision_model.encoder.layers.19.self_attn.k_proj.bias', 'vision_model.encoder.layers.19.mlp.fc1.weight', 'vision_model.encoder.layelayer_norm2.weight', 'vision_model.encoder.layers.8.mlp.fc1.weight', 'vision_model.encoder.layers.1.mlp.fc1.bias', 'vision_model.encoder.layers.17.mlp.fc2.weighision_model.encoder.layers.15.self_attn.k_proj.bias', 'vision_model.encoder.layers.13.layer_norm1.bias', 'vision_model.encoder.layers.6.mlp.fc2.bias', 'vision_mncoder.layers.12.self_attn.out_proj.bias', 'vision_model.embeddings.position_embedding.weight', 'vision_model.encoder.layers.20.mlp.fc1.bias', 'vision_model.encayers.14.mlp.fc2.weight', 'vision_model.encoder.layers.17.self_attn.v_proj.bias', 'vision_model.encoder.layers.12.mlp.fc1.bias', 'vision_model.encoder.layers.17_norm2.weight', 'vision_model.encoder.layers.1.mlp.fc1.weight', 'vision_model.encoder.layers.21.layer_norm2.weight', 'vision_model.encoder.layers.19.self_attn.qbias', 'vision_model.encoder.layers.19.layer_norm1.bias', 'vision_model.encoder.layers.18.layer_norm2.bias', 'vision_model.encoder.layers.7.self_attn.k_proj.wei'vision_model.encoder.layers.3.self_attn.v_proj.weight', 'vision_model.encoder.layers.12.layer_norm1.bias', 'vision_model.encoder.layers.23.layer_norm2.bias', '_model.encoder.layers.17.mlp.fc1.bias', 'vision_model.encoder.layers.20.mlp.fc1.weight', 'vision_model.encoder.layers.8.mlp.fc2.bias', 'vision_model.encoder.lay.self_attn.k_proj.weight', 'vision_model.encoder.layers.20.self_attn.v_proj.weight', 'vision_model.encoder.layers.5.layer_norm2.weight', 'vision_model.encoder.l8.layer_norm1.weight', 'vision_model.encoder.layers.3.mlp.fc2.weight', 'vision_model.encoder.layers.13.self_attn.v_proj.weight', 'vision_model.encoder.layers.4.norm2.bias', 'vision_model.encoder.layers.5.layer_norm2.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.bias', 'vision_model.encoder.layers.5.mlp.fc1.bivision_model.encoder.layers.2.self_attn.out_proj.bias', 'vision_model.encoder.layers.5.layer_norm1.weight', 'vision_model.encoder.layers.13.self_attn.q_proj.wei'vision_model.encoder.layers.22.mlp.fc1.bias', 'vision_model.encoder.layers.20.self_attn.q_proj.weight', 'vision_model.encoder.layers.20.mlp.fc2.bias', 'vision_encoder.layers.17.layer_norm1.weight', 'vision_model.encoder.layers.19.self_attn.q_proj.weight', 'vision_model.encoder.layers.21.self_attn.q_proj.weight', 'visiel.encoder.layers.3.self_attn.q_proj.weight', 'vision_model.encoder.layers.1.mlp.fc2.weight', 'vision_model.encoder.layers.10.mlp.fc2.weight', 'vision_model.encayers.3.self_attn.v_proj.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.bias', 'logit_scale', 'vision_model.encoder.layers.17.mlp.fc2.bias', 'vision_mocoder.layers.17.mlp.fc1.weight', 'vision_model.encoder.layers.15.mlp.fc1.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.bias', 'vision_model.encoder.l4.layer_norm2.weight', 'vision_model.encoder.layers.7.self_attn.v_proj.weight', 'vision_model.encoder.layers.3.layer_norm1.weight', 'vision_model.encoder.layersp.fc2.weight', 'vision_model.encoder.layers.13.mlp.fc2.bias', 'vision_model.encoder.layers.22.mlp.fc1.weight', 'vision_model.encoder.layers.22.self_attn.out_pro', 'vision_model.encoder.layers.13.mlp.fc1.bias', 'vision_model.encoder.layers.12.mlp.fc2.bias', 'vision_model.encoder.layers.15.self_attn.v_proj.bias', 'vision.encoder.layers.7.self_attn.v_proj.bias', 'vision_model.encoder.layers.1.layer_norm2.bias', 'vision_model.encoder.layers.0.self_attn.k_proj.weight', 'vision_mododer.layers.1.self_attn.q_proj.bias', 'vision_model.encoder.layers.16.self_attn.k_proj.bias', 'vision_model.encoder.layers.17.self_attn.q_proj.bias', 'vision_mocoder.layers.3.self_attn.k_proj.bias', 'vision_model.encoder.layers.7.self_attn.k_proj.bias', 'vision_model.encoder.layers.5.mlp.fc1.weight', 'vision_model.encoyers.6.layer_norm2.bias', 'vision_model.encoder.layers.9.mlp.fc2.bias', 'vision_model.encoder.layers.3.self_attn.q_proj.bias', 'vision_model.encoder.layers.2.mlweight', 'vision_model.encoder.layers.9.layer_norm2.bias', 'vision_model.encoder.layers.9.self_attn.v_proj.weight', 'vision_model.encoder.layers.9.self_attn.outweight', 'vision_model.encoder.layers.1.self_attn.v_proj.bias', 'vision_model.encoder.layers.7.self_attn.out_proj.bias', 'vision_model.encoder.layers.21.mlp.fc2t', 'vision_model.encoder.layers.1.mlp.fc2.bias', 'vision_model.encoder.layers.7.self_attn.q_proj.weight', 'vision_model.encoder.layers.2.self_attn.k_proj.bias'ion_model.encoder.layers.20.self_attn.q_proj.bias', 'vision_model.encoder.layers.2.self_attn.k_proj.weight', 'vision_model.encoder.layers.6.self_attn.k_proj.wei'vision_model.encoder.layers.8.self_attn.k_proj.weight', 'text_projection.weight', 'vision_model.encoder.layers.10.self_attn.q_proj.bias', 'vision_model.encoders.12.mlp.fc2.weight', 'vision_model.encoder.layers.9.self_attn.v_proj.bias', 'vision_model.encoder.layers.2.mlp.fc1.bias', 'vision_model.encoder.layers.12.layer.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.weight', 'vision_model.encoder.layers.18.self_attn.out_proj.weight', 'vision_model.encoder.layers.0.mlp.as', 'vision_model.encoder.layers.18.mlp.fc1.bias', 'vision_model.encoder.layers.15.layer_norm2.weight', 'vision_model.encoder.layers.22.layer_norm1.weight', 'vmodel.encoder.layers.11.self_attn.v_proj.bias', 'vision_model.encoder.layers.13.self_attn.out_proj.bias', 'vision_model.encoder.layers.0.layer_norm1.weight', 'vmodel.encoder.layers.20.layer_norm2.bias', 'vision_model.encoder.layers.10.self_attn.k_proj.weight', 'vision_model.encoder.layers.5.self_attn.q_proj.bias', 'visdel.encoder.layers.17.layer_norm2.bias', 'vision_model.encoder.layers.0.layer_norm2.weight', 'vision_model.pre_layrnorm.weight', 'vision_model.encoder.layers.22attn.k_proj.bias', 'vision_model.encoder.layers.5.self_attn.out_proj.weight', 'vision_model.encoder.layers.1.layer_norm2.weight', 'vision_model.encoder.layers.2_attn.out_proj.bias', 'vision_model.encoder.layers.15.self_attn.v_proj.weight', 'vision_model.encoder.layers.11.self_attn.out_proj.weight', 'vision_model.encoders.14.self_attn.v_proj.bias', 'vision_model.encoder.layers.0.layer_norm1.bias', 'vision_model.encoder.layers.4.layer_norm1.weight', 'vision_model.encoder.layersp.fc1.weight', 'vision_model.encoder.layers.11.self_attn.q_proj.weight', 'vision_model.encoder.layers.7.mlp.fc1.bias', 'vision_model.encoder.layers.11.layer_nors', 'vision_model.encoder.layers.0.self_attn.q_proj.weight', 'vision_model.encoder.layers.6.layer_norm1.bias', 'vision_model.encoder.layers.15.self_attn.out_proht', 'vision_model.encoder.layers.18.self_attn.v_proj.weight', 'vision_model.encoder.layers.10.layer_norm2.weight', 'vision_model.encoder.layers.0.self_attn.v_pas', 'vision_model.encoder.layers.16.mlp.fc1.bias', 'vision_model.encoder.layers.9.self_attn.k_proj.bias', 'vision_model.encoder.layers.14.layer_norm1.bias', 'vmodel.encoder.layers.14.mlp.fc1.bias', 'vision_model.encoder.layers.19.layer_norm1.weight', 'vision_model.encoder.layers.23.mlp.fc2.bias', 'vision_model.encoders.2.layer_norm2.weight', 'vision_model.encoder.layers.1.self_attn.k_proj.bias', 'vision_model.encoder.layers.2.self_attn.v_proj.bias', 'vision_model.encoder.lay.mlp.fc2.bias', 'vision_model.encoder.layers.8.layer_norm2.bias', 'vision_model.encoder.layers.11.mlp.fc2.weight', 'vision_model.encoder.layers.5.layer_norm1.bivision_model.encoder.layers.5.self_attn.q_proj.weight', 'vision_model.encoder.layers.11.mlp.fc2.bias', 'vision_model.encoder.layers.23.mlp.fc2.weight', 'vision_encoder.layers.20.layer_norm1.bias', 'vision_model.encoder.layers.16.layer_norm2.bias', 'vision_model.encoder.layers.5.mlp.fc2.bias', 'vision_model.encoder.layeself_attn.v_proj.bias', 'vision_model.encoder.layers.2.self_attn.out_proj.weight', 'vision_model.encoder.layers.16.layer_norm1.weight', 'vision_model.encoder.la8.layer_norm2.weight', 'vision_model.encoder.layers.19.mlp.fc2.weight', 'vision_model.encoder.layers.10.layer_norm2.bias', 'vision_model.encoder.layers.1.self_aproj.weight', 'vision_model.encoder.layers.15.layer_norm1.weight', 'vision_model.encoder.layers.19.self_attn.out_proj.bias', 'vision_model.encoder.layers.2.selfq_proj.weight', 'vision_model.encoder.layers.4.self_attn.k_proj.weight', 'vision_model.encoder.layers.14.self_attn.q_proj.bias', 'vision_model.encoder.layers.5.ttn.v_proj.weight', 'vision_model.encoder.layers.11.layer_norm1.bias', 'vision_model.encoder.layers.12.self_attn.k_proj.weight', 'vision_model.encoder.layers.15attn.out_proj.bias', 'vision_model.encoder.layers.6.self_attn.out_proj.bias', 'vision_model.encoder.layers.9.self_attn.out_proj.bias', 'vision_model.encoder.lay.self_attn.out_proj.weight', 'vision_model.encoder.layers.18.layer_norm1.weight', 'vision_model.encoder.layers.3.self_attn.k_proj.weight', 'vision_model.encoders.4.self_attn.q_proj.bias', 'vision_model.encoder.layers.11.layer_norm2.weight']
- This IS expected if you are initializing CLIPTextModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing ForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing CLIPTextModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequessification model from a BertForSequenceClassification model).
Loaded model config from [./models/cldm_v15.yaml]
Loaded state_dict from [./models/control_sd15_ini.ckpt]
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
/ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/trainer/configuration_validator.py:118: UserWarning: You defined a `tion_step` but have no `val_dataloader`. Skipping val loop.
  rank_zero_warn("You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.")
/ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/trainer/configuration_validator.py:280: LightningDeprecationWarning:`LightningModule.on_train_batch_start` hook signature has changed in v1.5. The `dataloader_idx` argument will be removed in v1.7.
  rank_zero_deprecation(
/ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/trainer/configuration_validator.py:287: LightningDeprecationWarning:`Callback.on_train_batch_end` hook signature has changed in v1.5. The `dataloader_idx` argument will be removed in v1.7.
  rank_zero_deprecation(
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [1]

  | Name              | Type               | Params
---------------------------------------------------------
0 | model             | DiffusionWrapper   | 859 M
1 | first_stage_model | AutoencoderKL      | 83.7 M
2 | cond_stage_model  | FrozenCLIPEmbedder | 123 M
3 | control_model     | ControlNet         | 361 M
---------------------------------------------------------
1.2 B     Trainable params
206 M     Non-trainable params
1.4 B     Total params
5,710.058 Total estimated model params size (MB)
/ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/trainer/data_loading.py:110: UserWarning: The dataloader, train_data, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on thisne) in the `DataLoader` init to improve performance.
  rank_zero_warn(
Epoch 0:   0%|                                                                                                                               | 0/1056 [00:00<?, /ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/utilities/data.py:56: UserWarning: Trying to infer the `batch_size` n ambiguous collection. The batch size we found is 4. To avoid any miscalculations, use `self.log(..., batch_size=batch_size)`.
  warning_cache.warn(
Data shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████|
Epoch 0:  21%|| 224/1056 [04:53<18:11,  1.31s/it, loss=0.0611, v_num=2, train/loss_simple_step=0.0623, train/loss_vlb_step=0.000236, train/loss_step=0.0623, glEpoch 0:  28%|| 300/1056 [06:23<16:07,  1.28s/it, loss=0.0611, v_num=2, train/loss_simple_step=0.020, train/loss_vlb_step=7.54e-5, train/loss_step=0.020, globaData shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:28<00:00
Epoch 0:  57%|██████████▊        | 600/1056 [12:40<09:38,  1.27s/it, loss=0.0745, v_num=2, train/loss_simple_step=0.0428, train/loss_vlb_step=0.000152, train/loData shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
Epoch 0:  58%|███▍  | 609/1056 [13:20<09:47,  1.31s/it, loss=0.0665, v_num=2, train/loss_simple_step=0.0532, train/loss_vlb_step=0.000262, train/loss_step=0.053Epoch 0:  67%|| 712/1056 [15:16<07:22,  1.29s/it, loss=0.0603, v_num=2, train/loss_simple_step=0.0232, train/loss_vlb_step=8.41e-5, train/loss_step=0.0232, gloEpoch 0:  85%|| 900/1056 [18:48<03:15,  1.25s/it, loss=0.0569, v_num=2, train/loss_simple_step=0.00959, train/loss_vlb_step=3.75e-5, train/loss_step=0.00959, gData shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:28<00:00
Epoch 0:  90%|| 953/1056 [20:17<02:11,  1.28s/it, loss=0.067, v_num=2, train/loss_simple_step=0.0193, train/loss_vlb_step=7.23e-5, train/loss_step=0.0193, globEpoch 0: 100%|| 1055/1056 [22:11<00:01,  1.26s/it, loss=0.0567, v_num=2, train/loss_simple_step=0.0556, train/loss_vlb_step=0.000276, train/loss_step=0.0556, g/ssd/xiedong/miniconda3/envs/py38_diffusers_1/lib/python3.8/site-packages/pytorch_lightning/utilities/data.py:56: UserWarning: Trying to infer the `batch_size` from an ambiguous collection. The batch size we found is 1. To avoid any miscalculations, use `self.log(..., batch_size=batch_size)`.
  warning_cache.warn(
Epoch 1:   0%| | 0/1056 [00:00<?, ?it/s, loss=0.0593, v_num=2, train/loss_simple_step=0.126, train/loss_vlb_step=0.000617, train/loss_step=0.126, global_step=10Data shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:27<00:00,  1.80it/s]
Epoch 1:  28%|| 300/1056 [06:06<15:23,  1.22s/it, loss=0.0465, v_num=2, train/loss_simple_step=0.0711, train/loss_vlb_step=0.000249, train/loss_step=0.0711, glData shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:28<00:00,  1.78it/s]
Epoch 1:  57%|| 600/1056 [12:12<09:16,  1.22s/it, loss=0.0632, v_num=2, train/loss_simple_step=0.0698, train/loss_vlb_step=0.000314, train/loss_step=0.0698, glData shape for DDIM sampling is (4, 4, 64, 64), eta 0.0
Running DDIM Sampling with 50 timesteps
DDIM Sampler: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:28<00:00,  1.78it/s]
Epoch 1:  61%|| 649/1056 [13:37<08:32,  1.26s/it, loss=0.0602, v_num=2, train/loss_simple_step=0.0739, train/loss_vlb_step=0.00045
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

训练文件被保存在 lightning_logs 目录。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/644519
推荐阅读
相关标签
  

闽ICP备14008679号