赞
踩
有很多人来问我,基于YOLO v7算法训练出来一个权重文件,如何进行部署。所以特地写一篇部署的blog~
一般,我们基于pytorch深度学习框架训练出来的权重文件是pt格式的,我们可以用python来直接调用这个文件。但是实际工业中,一般都是c++去调用权重文件的,所以我们需要将pt权重文件转换为能用c++去调用的格式。一般来说,我习惯用以下方式:
ps:当然,还有很多很多支持c++调用深度学习权重文件的,这里我只是列举了我个人比较喜欢用的几种调用方式。
本篇blog使用是用onnx runtime去调用onnx权重文件,然后基于visual studio来配置运行环境。我们先配置visual studio的环境,这里我们主要要配置两个外部库,一个是opencv(用于图片的读取和写入),另外一个就是onnx runtime(用于调用权重文件)。网上有很多关于该部分的讲解,我找了两个写的还不错的直接分享给大家吧:
YOLO V7项目下载路径:YOLO V7
这里值得注意,一定一定一定要下载最新的项目,我第一次下载YOLO v7的时候作者还没有解决模型export.py
中的bug,导出的onnx模型没法被调用。我重新下载了最新的代码,才跑通。
简单说下export.py
的几个需要修改的参数:
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='', help='weights path') #YOLO V7训练得到的pt权重文件
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # 图片长宽,保持跟训练时候一致即可
parser.add_argument('--batch-size', type=int, default=1, help='batch size') #默认为1
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid') #这个参数一定要加上去,如果不加的话默认导出onnx模型是不带最后一层Detect层的,最后结果是没办法解析出来的
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--simplify', action='store_true', default=True, help='simplify onnx model') #在导出onnx模型的时候,是否做模型剪枝操作,建议加上,如果不加,opencv去调用onnx模型可能会出错
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
opt = parser.parse_args()
最后,导出onnx模型,发现权重文件大小较原先pt文件减少了一倍。
代码链接:onnx runtime调用onnx模型
#include <fstream> #include <sstream> #include <iostream> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp> //#include <cuda_provider_factory.h> #include <onnxruntime_cxx_api.h> using namespace std; using namespace cv; using namespace Ort; struct Net_config { float confThreshold; // Confidence threshold float nmsThreshold; // Non-maximum suppression threshold string modelpath; }; typedef struct BoxInfo { float x1; float y1; float x2; float y2; float score; int label; } BoxInfo; class YOLOV7 { public: YOLOV7(Net_config config); void detect(Mat& frame); private: int inpWidth; int inpHeight; int nout; int num_proposal; vector<string> class_names; int num_class; float confThreshold; float nmsThreshold; vector<float> input_image_; void normalize_(Mat img); void nms(vector<BoxInfo>& input_boxes); Env env = Env(ORT_LOGGING_LEVEL_ERROR, "YOLOV7"); Ort::Session* ort_session = nullptr; SessionOptions sessionOptions = SessionOptions(); vector<char*> input_names; vector<char*> output_names; vector<vector<int64_t>> input_node_dims; // >=1 outputs vector<vector<int64_t>> output_node_dims; // >=1 outputs }; YOLOV7::YOLOV7(Net_config config) { this->confThreshold = config.confThreshold; this->nmsThreshold = config.nmsThreshold; string classesFile = ""; #coco.names路径 string model_path = config.modelpath; std::wstring widestr = std::wstring(model_path.begin(), model_path.end()); //OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC); ort_session = new Session(env, widestr.c_str(), sessionOptions); size_t numInputNodes = ort_session->GetInputCount(); size_t numOutputNodes = ort_session->GetOutputCount(); AllocatorWithDefaultOptions allocator; for (int i = 0; i < numInputNodes; i++) { input_names.push_back(ort_session->GetInputName(i, allocator)); Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i); auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo(); auto input_dims = input_tensor_info.GetShape(); input_node_dims.push_back(input_dims); } for (int i = 0; i < numOutputNodes; i++) { output_names.push_back(ort_session->GetOutputName(i, allocator)); Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i); auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo(); auto output_dims = output_tensor_info.GetShape(); output_node_dims.push_back(output_dims); } this->inpHeight = input_node_dims[0][2]; this->inpWidth = input_node_dims[0][3]; this->nout = output_node_dims[0][2]; this->num_proposal = output_node_dims[0][1]; ifstream ifs(classesFile.c_str()); string line; while (getline(ifs, line)) this->class_names.push_back(line); this->num_class = class_names.size(); } void YOLOV7::normalize_(Mat img) { // img.convertTo(img, CV_32F); int row = img.rows; int col = img.cols; this->input_image_.resize(row * col * img.channels()); for (int c = 0; c < 3; c++) { for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { float pix = img.ptr<uchar>(i)[j * 3 + 2 - c]; this->input_image_[c * row * col + i * col + j] = pix / 255.0; } } } } void YOLOV7::nms(vector<BoxInfo>& input_boxes) { sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; }); vector<float> vArea(input_boxes.size()); for (int i = 0; i < int(input_boxes.size()); ++i) { vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) * (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1); } vector<bool> isSuppressed(input_boxes.size(), false); for (int i = 0; i < int(input_boxes.size()); ++i) { if (isSuppressed[i]) { continue; } for (int j = i + 1; j < int(input_boxes.size()); ++j) { if (isSuppressed[j]) { continue; } float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1); float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1); float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2); float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2); float w = (max)(float(0), xx2 - xx1 + 1); float h = (max)(float(0), yy2 - yy1 + 1); float inter = w * h; float ovr = inter / (vArea[i] + vArea[j] - inter); if (ovr >= this->nmsThreshold) { isSuppressed[j] = true; } } } // return post_nms; int idx_t = 0; input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end()); } void YOLOV7::detect(Mat& frame) { Mat dstimg; resize(frame, dstimg, Size(this->inpWidth, this->inpHeight)); this->normalize_(dstimg); array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth }; auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size()); // 开始推理 vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); /generate proposals vector<BoxInfo> generate_boxes; float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth; int n = 0, k = 0; ///cx,cy,w,h,box_score, class_score const float* pdata = ort_outputs[0].GetTensorMutableData<float>(); for (n = 0; n < this->num_proposal; n++) { float box_score = pdata[4]; if (box_score > this->confThreshold) { int max_ind = 0; float max_class_socre = 0; for (k = 0; k < num_class; k++) { if (pdata[k + 5] > max_class_socre) { max_class_socre = pdata[k + 5]; max_ind = k; } } max_class_socre *= box_score; if (max_class_socre > this->confThreshold) { float cx = pdata[0] * ratiow; float cy = pdata[1] * ratioh; float w = pdata[2] * ratiow; float h = pdata[3] * ratioh; float xmin = cx - 0.5 * w; float ymin = cy - 0.5 * h; float xmax = cx + 0.5 * w; float ymax = cy + 0.5 * h; generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind }); } } pdata += nout; } // Perform non maximum suppression to eliminate redundant overlapping boxes with // lower confidences nms(generate_boxes); for (size_t i = 0; i < generate_boxes.size(); ++i) { int xmin = int(generate_boxes[i].x1); int ymin = int(generate_boxes[i].y1); rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2); string label = format("%.2f", generate_boxes[i].score); label = this->class_names[generate_boxes[i].label] + ":" + label; putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1); } } int main() { Net_config YOLOV7_nets = { 0.3, 0.5, "E:/work/People_Detect/yolov7-main/models/yolov7_640x640.onnx" }; choices=["models/yolov7_640x640.onnx", "models/yolov7-tiny_640x640.onnx", "models/yolov7_736x1280.onnx", "models/yolov7-tiny_384x640.onnx", "models/yolov7_480x640.onnx", "models/yolov7_384x640.onnx", "models/yolov7-tiny_256x480.onnx", "models/yolov7-tiny_256x320.onnx", "models/yolov7_256x320.onnx", "models/yolov7-tiny_256x640.onnx", "models/yolov7_256x640.onnx", "models/yolov7-tiny_480x640.onnx", "models/yolov7-tiny_736x1280.onnx", "models/yolov7_256x480.onnx"] # onnx权重文件路径,这里只能使用上述这种命名方式,因为中间需要解析出模型的测试图片大小 YOLOV7 net(YOLOV7_nets); string imgpath = ""; #测试图片路径 Mat srcimg = imread(imgpath); net.detect(srcimg); static const string kWinName = "Deep learning object detection in ONNXRuntime"; namedWindow(kWinName, WINDOW_NORMAL); imshow(kWinName, srcimg); waitKey(0); destroyAllWindows(); }
上述需要修改的地方有三处:
person
animal
......
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。