赞
踩
本文转载于于链接:https://zhuanlan.zhihu.com/p/147462170,在其基础上整理了24个可视化网络结构的工具,有需要时不迷路
深度学习领域,最常见的就是各种网络模型,那么在写论文或者文章,介绍网络模型的时候,最好的办法当然就是展示代码画图,今天介绍的 Github项目,就是整理了 24个设计和可视化网络结构的工具,其地址如下:https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
Github: https://github.com/gwding/draw_convnet
star 数量:1.7k+
这个工具最后一次更新是 2018 年的时候,一个 python 脚本来绘制卷积神经网络的工具,效果如下所示:
网址:http://alexlenail.me/NN-SVG/LeNet.html
这个工具有 3 种网络结构风格,分别如下所示:
LeNet 类型:
AlexNet 类型
FCNN 类型
GitHub 地址:https://github.com/HarisIqbal88/PlotNeuralNet
star 数量:8.2k+
这个工具是基于 Latex 代码实现的用于绘制网络结构,可以看看使用例子看看这些网络结构图是如何绘制出来的。
效果如下所示:
这里给出在 Ubuntu 和 windows 两个系统的安装方式:
ubuntu 16.04
sudo apt-get install texlive-latex-extra
Ubuntu 18.04.2 是基于这个网站:https://gist.github.com/rain1024/98dd5e2c6c8c28f9ea9d,安装命令如下:
sudo apt-get install texlive-latex-base sudo apt-get install texlive-fonts-recommended sudo apt-get install texlive-fonts-extra sudo apt-get install texlive-latex-extra
Windows
首先下载并安装 MikTex,下载网站:https://miktex.org/download
其次,下载并安装 windows 的 bash 运行器,推荐这两个:
Git:https://git-scm.com/download/win
Cygwin:https://www.cygwin.com/
安装完后就是使用,按照如下所示即可:
cd pyexamples/ bash ../tikzmake.sh test_simple
Python 的用法如下:
先创建新的文件夹,并生成一个新的 python 代码文件:
$ mkdir my_project $ cd my_project vim my_arch.py
然后在新的代码文件 my_arch.py
中添加这段代码,用于定义你的网络结构,主要是不同类型网络层的参数,包括输入输出数量、卷积核数量等
-
import sys
-
sys.path.
append(
'../')
-
from pycore.tikzeng
import *
-
-
# defined your arch
-
arch = [
-
to_head(
'..' ),
-
to_cor(),
-
to_begin(),
-
to_Conv(
"conv1",
512,
64, offset=
"(0,0,0)", to=
"(0,0,0)", height=
64, depth=
64, width=
2 ),
-
to_Pool(
"pool1", offset=
"(0,0,0)", to=
"(conv1-east)"),
-
to_Conv(
"conv2",
128,
64, offset=
"(1,0,0)", to=
"(pool1-east)", height=
32, depth=
32, width=
2 ),
-
to_connection(
"pool1",
"conv2"),
-
to_Pool(
"pool2", offset=
"(0,0,0)", to=
"(conv2-east)", height=
28, depth=
28, width=
1),
-
to_SoftMax(
"soft1",
10 ,
"(3,0,0)",
"(pool1-east)", caption=
"SOFT" ),
-
to_connection(
"pool2",
"soft1"),
-
to_end()
-
]
-
-
def main():
-
namefile = str(sys.argv[
0]).split(
'.')[
0]
-
to_generate(arch, namefile +
'.tex' )
-
-
if __name__ ==
'__main__':
-
main()
最后,运行脚本
bash ../tikzmake.sh my_arch
https://www.tensorflow.org/tensorboard/graphs
使用过 TensorFlow 的都应该知道这个绘图工具,TensorFlow 的可视化工具,查看网络结构、损失的变化、准确率等指标的变化情况等。
网络结构的效果如下图所示:
https://github.com/BVLC/caffe/blob/master/python/caffe/draw.py
Caffe 的绘图工具,效果如下所示:
http://www.mathworks.com/help/nnet/ref/view.html
Matlab 的绘图工具,效果如下所示:
https://transcranial.github.io/keras-js/#/inception-v3
Keras 的可视化工具,效果如下所示:
https://github.com/stared/keras-sequential-ascii/
Keras 的一个第三方库,用于对序列模型的网络结构和参数进行检查,直接打印出来结果,比如,VGG 16 的网络结构如下所示,每层网络的参数维度,参数的数量以及占整个网络参数的比例都会展示出来:
通过 PyPI:
pip install keras_sequential_ascii
直接通过 github 仓库:
pip install git+git://github.com/stared/keras-sequential-ascii.git
在代码中添加:
from keras_sequential_ascii import keras2ascii
keras2ascii(model)
https://github.com/lutzroeder/Netron
Star 数量:9.7k+
Netron 可以可视化神经网络,深度学习和机器学习模型,目前支持的网络框架包括:
ONNX: .onnx, .pb, .pbtxt
文件
Keras:.h5,.keras
文件
Core ML:.mlmodel
Caffe:.caffemodel, .prototxt
Caffe2:predict_net.pb, predict_net.pbtxt
Darknet: .cfg
MXNet:.model, -symbol.json
ncnn:.param
TensorFlow Lite:.tflite
另外,Netron 也有实验支持这些框架:
TorchScript: .pt, .pth
PyTorch:.pt, .pth
Torch: .t7
Arm NN:.armnn
Barracuda:.nn
BigDL .bigdl
, .model
Chainer :.npz
, .h5
CNTK :.model
, .cntk
Deeplearning4j:.zip
MediaPipe:.pbtxt
ML.NET:.zip
MNN:.mnn
OpenVINO :.xml
PaddlePaddle :.zip
, __model__
scikit-learn :.pkl
Tengine :.tmfile
TensorFlow.js :model.json
, .pb
TensorFlow :.pb
, .meta
, .pbtxt
, .ckpt
, .index
其效果如下所示:
安装方式,根据不同系统,有所不一样:
macOS
两种方式,任选一种:
下载 .dmg
文件,地址:https://github.com/lutzroeder/netron/releases/latest
运行命令 brew cask install netron
Linux
也是两种方式,任选其中一种:
下载 .AppImage
文件,下载地址:https://github.com/lutzroeder/netron/releases/latest
运行命令 snap install netron
Windows
也是两种方式,任选其中一种:
下载 .exe
文件,下载地址:https://github.com/lutzroeder/netron/releases/latest
运行命令 winget install netron
浏览器:浏览器运行地址:https://www.lutzroeder.com/ai/netron
Python 服务器:
首先,运行安装命令 pip install netron
,然后使用方法有两种:
命令行,运行 netron [文件路径]
.py
代码中加入
impor netron;
netron.start('文件路径');
https://github.com/martisak/dotnets
这个工具是一个简单的 python 脚本,利用 Graphviz
生成神经网络的图片。主要参考了文章:https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/
用法如下:
在 MaxOS 上:
python dotnets.py | dot -Tpng | open -f -a /Applications/Preview.app
或者生成 PDF 文件
python dotnets.py | dot -Tpdf > test.pdf
其效果如下所示:
http://www.graphviz.org/
教程:https://tgmstat.wordpress.com/2013/06/12/draw-neural-network-diagrams-graphviz/
Graphviz
是一个开源的图可视化软件,它可以用抽象的图形和网络图来表示结构化信息。
其效果如下所示:
https://keras.io/api/utils/model_plotting_utils/
这是 Keras 库中的一个功能模块-- keras.utils.vis_utils
提供的绘制 Keras 网络模型(使用的是 graphviz
)
其效果如下所示:
https://conx.readthedocs.io/en/latest/index.html
Python 的一个第三方库 conx
可以通过函数net.picture()
来实现对带有激活函数网络的可视化,可以输出图片格式包括 SVG, PNG 或者是 PIL。
其效果如下所示:
通过拖和拽相应的图形框来实现一个网络结构的可视化,下面是一个可视化 LeNet 的例子:
教程:https://beckmw.wordpress.com/2013/03/04/visualizing-neural-networks-from-the-nnet-package/
R 工具包,简单的使用例子如下:
data(infert, package="datasets")
plot(neuralnet(case~parity+induced+spontaneous, infert))
效果如下所示:
https://www.graphcore.ai/posts/what-does-machine-learning-look-like
GraphCore 主要是展示神经网络中操作的可视化结果,但也包括了网络结构的内容,比如每层的网络参数等。
下面展示了两个网络结构的可视化效果--AlexNet 和 ResNet50.
AlexNet
ResNet50
https://wagenaartje.github.io/neataptic/
Neataptic 提供了非常灵活的神经网络可视化形式
神经元和突触可以通过一行代码进行删除;
没有规定神经网络的结构必须包含哪些内容
这种灵活性允许通过神经进化(neuro-evolution)的方式为数据集调整网络结构的形状,并通过多线程来实现。
其效果如下图所示:
教程:https://www.freecodecamp.org/news/tensorspace-js-a-way-to-3d-visualize-neural-networks-in-browsers-2c0afd7648a8/
TensorSpace 是通过 TensorFlow.js,Three.js 和 Tween.js 构建的一个神经网络三维可视化框架。它提供了 APIs 来构建深度学习网络层,加载预训练模型以及在浏览器中就可以生成三维的可视化结构。通过应用它的 API 接口,可以更直观地可视化和理解通过 TensorFlow、Keras 和 TensorFlow.js 等构建的任何预训练模型。
效果如下图所示:
http://dgschwend.github.io/netscope/quickstart.html
一款基于 web 端的可视化和分析卷积神经网络结构(或者是任意有向无环图),当前支持使用 Caffe 的 prototxt 形式。
效果如下图所示:
https://github.com/mlajtos/moniel
计算图的交互式表示法,展示例子如下所示,左边是输入,右侧就是对应结构的可视化结果。
http://www.texample.net/tikz/examples/neural-network/
这个工具也可以通过 LaTex 来实现一个神经网络结构的可视化,比如,一个 LaTex 的例子:
其可视化结果如下所示:
github: https://github.com/keplr-io/quiver
Star 数量:1.5k
Keras 的一款交互式可视化卷积特征的一个工具
展示例子如下所示:
两种方式,直接用 pip
pip install quiver_engine
或者通过 GitHub 仓库的方式:
pip install git+git://github.com/keplr-io/quiver.git
首先构建你的 keras 模型:
model = Model(...)
接着通过一行代码来发布可视化的展示板:
quiver_engine.server.launch(model, classes=['cat','dog'], input_folder='./imgs')
最后在刚刚设置的文件夹中就可以看到每个网络层的可视化结果。
如果是想在浏览器中查看,代码如下:
from quiver_engine import server
server.launch(model)
默认的地址是 localhost:5000
论文地址:https://arxiv.org/abs/1902.04394
Github:https://github.com/viscom-ulm/Net2Vis
这款工具的效果例子图:
安装方法
git clone https://github.com/viscom-ulm/Net2Vis
如果是采用 docker,那么也要运行 daemon,这样才能在单独的容器里运行粘贴的代码。
对于后端的配置,步骤如下:
cd backend
pip3 install -r requirements.txt
docker build --force-rm -t tf_plus_keras
python server.py
而前端是一个 react 的应用,使用方式如下:
cd net2vis
npm install
npm start
https://cuijiahua.com/convdraw/
一个轻量级在线绘制神经网络工具,但是功能似乎不多
参考文章:
https://datascience.stackexchange.com/questions/12851/how-do-you-visualize-neural-network-architectures
https://datascience.stackexchange.com/questions/2670/visualizing-deep-neural-network-training
这 24 款工具的输出结果既有直接打印的,也有黑白图、彩色图、炫酷的球体可视化结果,以及三维可视化结果,基本都可以支持目前主流的深度学习框架,当然也有的是基于特定框架,比如 keras,实现的对应第三方库。
可以根据需求和使用的框架来进行选择,相信应该能够满足大部分人对可视化网络结构的需求。
若有其他可视化工具,欢迎推荐给我补充哦
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。