赞
踩
遗传算法中的交叉(crossover)函数是用来创建新的解决方案(即 offspring 或 children)的方法,以下是五种常见的交叉函数的 MATLAB 实现:
1. 单点交叉 (Single-Point Crossover)
在单点交叉中,我们随机选择一个切割点,然后交换两个父代染色体在切割点之后的部分。
function [child1, child2] = singlePointCrossover(parent1, parent2)
crossover_point = randi([1 length(parent1)], 1, 1);
child1 = [parent1(1:crossover_point) parent2(crossover_point+1:end)];
child2 = [parent2(1:crossover_point) parent1(crossover_point+1:end)];
end
2. 两点交叉 (Two-Point Crossover)
在两点交叉中,我们随机选择两个切割点,然后交换两个父代染色体在这两个点之间的部分。
function [child1, child2] = twoPointCrossover(parent1, parent2)
crossover_points = sort(randi([1 length(parent1)], 1, 2));
child1 = [parent1(1:crossover_points(1)) parent2(crossover_points(1)+1:crossover_points(2)) parent1(crossover_points(2)+1:end)];
child2 = [parent2(1:crossover_points(1)) parent1(crossover_points(1)+1:crossover_points(2)) parent2(crossover_points(2)+1:end)];
end
3. 均匀交叉 (Uniform Crossover)
在均匀交叉中,我们对每个位进行决策,随机决定该位来自于哪个父代染色体。
function [child1, child2] = uniformCrossover(parent1, parent2, crossoverRate)
child1 = parent1;
child2 = parent2;
for i = 1:length(parent1)
if rand < crossoverRate
child1(i) = parent2(i);
child2(i) = parent1(i);
end
end
end
4. 算术交叉 (Arithmetic Crossover)
在算术交叉中,我们根据一个随机权重对两个父代染色体进行线性组合。
function [child1, child2] = arithmeticCrossover(parent1, parent2)
alpha = rand;
child1 = alpha*parent1 + (1-alpha)*parent2;
child2 = alpha*parent2 + (1-alpha)*parent1;
end
5. 部分匹配交叉 (Partially Matched Crossover, PMX)
部分匹配交叉主要用于排列问题,它保证了交叉后的染色体仍然是一个有效的排列。
function [child1, child2] = pmxCrossover(parent1, parent2)
length_p = length(parent1);
crossover_points = sort(randi([1 length_p], 1, 2));
segment1 = parent1(crossover_points(1):crossover_points(2));
segment2 = parent2(crossover_points(1):crossover_points(2));
child1 = mapOrder(parent1, segment2, segment1, crossover_points);
child2 = mapOrder(parent2, segment1, segment2, crossover_points);
end
function child = mapOrder(parent, segment1, segment2, crossover_points)
child = parent;
child(crossover_points(1):crossover_points(2)) = segment1;
for i = [1:crossover_points(1)-1, crossover_points(2)+1:length(parent)]
if ismember(child(i), segment1)
index = find(segment2 == child(i));
while ismember(segment1(index), child)
index = find(segment2 == segment1(index));
end
child(i) = segment1(index);
end
end
end
6. 循环交叉 (Cycle Crossover, CX)
循环交叉是一种主要用于处理排列编码问题的交叉方法。它能够保持基因的绝对位置不变。
function [child1, child2] = cycleCrossover(parent1, parent2)
length_p = length(parent1);
cycleStart = 1;
cycleIndex = cycleStart;
child1 = zeros(1, length_p);
child2 = zeros(1, length_p);
while any(child1 == 0)
child1(cycleIndex) = parent1(cycleIndex);
child2(cycleIndex) = parent2(cycleIndex);
cycleVal = parent2(cycleIndex);
cycleIndex = find(parent1 == cycleVal);
if parent1(cycleStart) == parent2(cycleIndex)
cycleStart = find(child1 == 0, 1, 'first');
cycleIndex = cycleStart;
end
end
end
7. 顺序交叉 (Order Crossover, OX)
顺序交叉也是一种主要用于处理排列编码问题的交叉方法。它能够保持基因的相对顺序不变。
function [child1, child2] = orderCrossover(parent1, parent2)
length_p = length(parent1);
crossover_points = sort(randi([1 length_p], 1, 2));
segment1 = parent1(crossover_points(1):crossover_points(2));
segment2 = parent2(crossover_points(1):crossover_points(2));
child1 = fillOrder(parent1, segment2, crossover_points);
child2 = fillOrder(parent2, segment1, crossover_points);
end
function child = fillOrder(parent, segment, crossover_points)
child = zeros(1, length(parent));
child(crossover_points(1):crossover_points(2)) = segment;
j = 1;
for i = 1:length(parent)
if ~ismember(parent(i), child)
while child(j) ~= 0
j = j + 1;
end
child(j) = parent(i);
end
end
end
8. 位置交叉 (Position Based Crossover, POS)
位置交叉是另一种主要用于处理排列编码问题的交叉方法。它从一个父代继承一组基因的位置,从另一个父代继承这些位置上的基因。
function [child1, child2] = positionCrossover(parent1, parent2)
length_p = length(parent1);
positions = randi([0 1], 1, length_p);
child1 = fillPosition(parent1, parent2, positions);
child2 = fillPosition(parent2, parent1, positions);
end
function child = fillPosition(parent1, parent2, positions)
child = zeros(1, length(parent1));
child(positions == 1) = parent1(positions == 1);
j = 1;
for i = 1:length(parent1)
if ~ismember(parent2(i), child)
while child(j) ~= 0
j = j + 1;
end
child(j) = parent2(i);
end
end
end
9. 模拟二进制交叉 (Simulated Binary Crossover, SBX)
模拟二进制交叉是一种用于处理实数编码问题的交叉方法。它通过模仿二进制编码的单点交叉来生成子代。
function [child1, child2] = simulatedBinaryCrossover(parent1, parent2, eta)
length_p = length(parent1);
child1 = zeros(1, length_p);
child2 = zeros(1, length_p);
for i = 1:length_p
r = rand;
if r <= 0.5
beta = (2*r)^(1/(eta+1));
else
beta = (1/(2*(1-r)))^(1/(eta+1));
end
child1(i) = 0.5*(((1+beta)*parent1(i)) + (1-beta)*parent2(i));
child2(i) = 0.5*(((1-beta)*parent1(i)) + (1+beta)*parent2(i));
end
end
10. 模板交叉 (Template Crossover)
模板交叉使用一个模板来决定每个基因应该来自哪个父代。模板是一串和染色体一样长的二进制串。
function [child1, child2] = templateCrossover(parent1, parent2, template)
child1 = parent1;
child2 = parent2;
child1(template == 1) = parent2(template == 1);
child2(template == 1) = parent1(template == 1);
end
11. 最大最小交叉 (Max-min Arithmetic Recombination)
在最大最小交叉中,我们用两个父代染色体的最大值和最小值来创建子代染色体。
function [child1, child2] = maxminCrossover(parent1, parent2)
child1 = max(parent1, parent2);
child2 = min(parent1, parent2);
end
12. 混合交叉 (Blend Crossover, BLX-alpha)
混合交叉是一种用于实数编码问题的交叉方法。这种方法生成的子代在每个维度上都位于父代的中心附近。
function [child1, child2] = blendCrossover(parent1, parent2, alpha)
child1 = (1 - alpha)*parent1 + alpha*parent2;
child2 = alpha*parent1 + (1 - alpha)*parent2;
end
13. 中间交叉 (Intermediate Crossover)
中间交叉是一种用于实数编码问题的交叉方法。这种方法生成的子代在每个维度上都位于父代的中间。
function [child1, child2] = intermediateCrossover(parent1, parent2)
child1 = 0.5*(parent1 + parent2);
child2 = 0.5*(parent1 + parent2);
end
14. 线性组合交叉 (Linear Combination Crossover)
线性组合交叉是一种用于实数编码问题的交叉方法。这种方法根据随机权重对父代进行线性组合,生成子代。
function [child1, child2] = linearCombinationCrossover(parent1, parent2)
alpha = rand;
beta = rand;
child1 = alpha*parent1 + (1 - alpha)*parent2;
child2 = beta*parent1 + (1 - beta)*parent2;
end
15. 一致交叉 (Heuristic Crossover)
一致交叉是一种用于实数编码问题的交叉方法。这种方法考虑了父代的适应度,生成一个更好的子代。
function child = heuristicCrossover(parent1, parent2, fitness1, fitness2)
if fitness1 > fitness2
best = parent1;
worst = parent2;
else
best = parent2;
worst = parent1;
end
beta = rand;
child = best + beta*(best - worst);
end
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。