赞
踩
原标题:只需一行代码!Python中9大时间序列预测模型
在时间序列问题上,机器学习被广泛应用于分类和预测问题。当有预测模型来预测未知变量时,在时间充当独立变量和目标因变量的情况下,时间序列预测就出现了。
预测值可以是潜在雇员的工资或银行账户持有人的信用评分。任何正式引入统计数据的数据科学都会遇到置信区间,这是某个模型确定性的衡量标准。
因此,预测一段时间内某些数据的价值需要特定的技术,并且需要多年的发展。
由于每种都有其特殊用途,必须注意为特定应用选择正确的技术。预测人员在技术选择中发挥作用,他们越了解预测可能性的范围,公司的预测工作就越有可能取得成果。
其方法的选择取决于预测的背景、历史数据的相关性和可用性、所需的准确度、预测的时间段、对企业的预测成本以及分析所需的时间。
影响预测的因素
· 增加或减少趋势
· 季节性
· 数据集的大小
时间序列的组成部分与数据本身一样复杂。随着时间的增加,获得的数据也会增加。有时候更多的数据并不意味着更多的信息,但是更大的样本避免了由于随机采样而产生的误差。
因此,对于每个应用程序,使用的技术都会发生变化。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。