赞
踩
本节基于MNIST数据集,实现CNN学习过程。
这里我们可以先查看图像
import os import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt torch.manual_seed(1) # reproducible EPOCH = 8 BATCH_SIZE = 50 LR = 0.001 DOWNLOAD_MNIST = False # 下载数据集 if not (os.path.exists('./mnist/')) or not os.listdir('./mnist/'): DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST( root='./mnist/', train=True, # 将一张图片或numpy数组转成 (C x H x W)torch.FloatTensor 并归一化[0.0,0.1] transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST, ) print(train_data.train_data.size()) # (60000, 28, 28) print(train_data.train_labels.size()) # (60000) plt.imshow(train_data.train_data[1].numpy(), cmap='gray') # train_data[0] plt.title('%i' % train_data.train_labels[1]) plt.show()
如下示例,直接运行,数据集自动下载(建议先行下载好数据)
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 定义超参数 BATCH_SIZE=512 # 大概需要2G的显存 EPOCHS=20 # 总训练批次 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 让torch判断是否使用GPU train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=BATCH_SIZE, shuffle=True) class ConvNet(nn.Module): def __init__(self): super(ConvNet,self).__init__() # 1, 28x28 self.conv1=nn.Conv2d(1,10,5) # 10, 24x24 self.conv2=nn.Conv2d(10,20,3) # 128, 10x10 self.fc1 = nn.Linear(20*10*10,500) self.fc2 = nn.Linear(500,10) def forward(self,x): in_size = x.size(0) out = F.max_pool2d(F.relu(self.conv1(x)), 2, 2) out = F.relu(self.conv2(out)) out = out.view(in_size,-1) out = self.fc1(out) out = F.relu(out) out = self.fc2(out) out = F.log_softmax(out,dim=1) return out model = ConvNet().to(DEVICE) optimizer = optim.Adam(model.parameters()) def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if(batch_idx+1)%30 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}' .format(epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加 pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标 correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' .format(test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, EPOCHS + 1): train(model, DEVICE, train_loader, optimizer, epoch) test(model, DEVICE, test_loader)
所有操作封装成函数
from __future__ import print_function import argparse #Python 命令行解析工具 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) """ pytorch中CrossEntropyLoss是通过两个步骤计算出来的: 第一步是计算log softmax,第二步是计算cross entropy(或者说是negative log likehood), CrossEntropyLoss不需要在网络的最后一层添加softmax和log层,直接输出全连接层即可。 而NLLLoss则需要在定义网络的时候在最后一层添加log_softmax层(softmax和log层) 总而言之:CrossEntropyLoss() = log_softmax() + NLLLoss() """ loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train_Epoch:{} [{}/{} ({:.2f}%)] \t loss:{:.6f}' .format(epoch,batch_idx*len(data),len(train_loader), 100.0*batch_idx/len(train_loader),loss.item())) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss pred = torch.max(output,1)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\n Test_set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' .format(test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 2, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if __name__ == '__main__': main()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。