当前位置:   article > 正文

Elasticsearch 索引数据多了,调优,部署方案

Elasticsearch 索引数据多了,调优,部署方案

1:动态索引层面
基于 模板+时间+rollover api 滚动 创建索引,举例:设计阶段定义:blog 索引的模板格式为:blog_index_时间戳的形式,每天递增数据。这样做的好处:不至于数据量激增导致单个索引数据量非常大,接近于上线 2 的32 次幂-1,索引存储达到了 TB+甚至更大。一旦单个索引很大,存储等各种风险也随之而来,所以要提前考虑+及早避免。

2: 存储层面
冷热数据分离存储 ,热数据(比如最近 3 天或者一周的数据),其余为冷数据。对于冷数据不会再写入新数据,可以考虑定期 force_merge 加 shrink 压缩操作,节省存储空间和检索效率。

3:部署层面
一旦之前没有规划,这里就属于应急策略。结合 ES 自身的支持动态扩展的特点,动态新增机器的方式可以缓解集群压力,注意:如果之前主节点等 规划合理 ,不需要重启集群也能完成动态新增的。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/484362
推荐阅读
相关标签
  

闽ICP备14008679号