当前位置:   article > 正文

LeetCode-152. 乘积最大子数组【数组 动态规划】

LeetCode-152. 乘积最大子数组【数组 动态规划】

题目描述:

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续
子数组
(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

示例 1:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:

输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

提示:

1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
nums 的任何前缀或后缀的乘积都 保证 是一个 32-位 整数

解题思路一:动态规划五部曲:定推初遍举

  1. dp定义
    以下标 i 结尾的连续子序列的乘积的最大值。
    牢记状态的定义,一定以下标 i 结尾,即:乘积数组中 nums[i] 必须被选取。
    • 如果 dp[i - 1] 是负数,乘上 nums[i] 还是负数,倒不如另起炉灶。
    • 如果 nums[i] 是负数该怎么办呢?dp[i - 1] 是正数的时候,越乘越小,dp[i - 1] 是负数的时候,越乘越大,于是我们可能就需要记录一下负数的那个最小数。

遇到这样的问题,其实就在提示我们状态不够用了。因此,需要在原来的一维 dp 后面新增一个状态。

针对这道题,第 2 维状态只需要两个:

  • 用 0 表示遍历的过程中得到的以 nums[i] 结尾的连续子序列的乘积的最小值;
  • 用 1 表示遍历的过程中得到的以 nums[i] 结尾的连续子序列的乘积的最大值。

当 nums[i] = 0 的时候包含在上面二者之中,无需单独讨论。

状态转移方程写在了参考代码 1 中。即使用二维状态数组同时记录乘积的最大值和最小值,本来写了一堆文字的,后来看太长了,好多废话,直接看代码比较清楚一些。

这里就声明一下状态:

dp[i][1] 表示:以 nums[i] 结尾的连续子序列的乘积的最大值;
dp[i][0] 表示:以 nums[i] 结尾的连续子序列的乘积的最小值。

  1. 推导公式
if nums[i] >= 0:
                dp[i][1] = max(nums[i], dp[i-1][1] * nums[i])
                dp[i][0] = min(nums[i], dp[i-1][0] * nums[i])
            else:
                dp[i][1] = max(nums[i], dp[i-1][0] * nums[i])
                dp[i][0] = max(nums[i], dp[i-1][1] * nums[i])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  1. 初始化
dp = [[0, 0] for _ in range(n)]
        dp[0][0] = nums[0]
        dp[0][1] = nums[0]
  • 1
  • 2
  • 3
  1. 遍历顺序,显然是从前往后
for i in range(1, n):
  • 1
  1. 举例
    在这里插入图片描述
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        if n == 0:
            return 0
        dp = [[0, 0] for _ in range(n)]
        dp[0][0] = nums[0]
        dp[0][1] = nums[0]
        for i in range(1, n):
            if nums[i] >= 0:
                dp[i][1] = max(nums[i], dp[i-1][1] * nums[i])
                dp[i][0] = min(nums[i], dp[i-1][0] * nums[i])
            else:
                dp[i][1] = max(nums[i], dp[i-1][0] * nums[i])
                dp[i][0] = min(nums[i], dp[i-1][1] * nums[i])
        # print(dp)
        ans = dp[0][1]
        for i in range(1, n):
            ans = max(ans, dp[i][1])
        return ans
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

时间复杂度:O(n)
空间复杂度:O(n)

解题思路二:因为每一个状态只与前一个状态有关,可以使用「滚动变量」技巧,使用常数个变量完成这道问题。

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        n = len(nums)
        if n == 0:
            return 0
        # dp = [[0, 0] for _ in range(n)]
        # dp[0][0] = nums[0]
        # dp[0][1] = nums[0]
        preMax = nums[0]
        preMin = nums[0]
        curMax = preMax
        curMin = preMin
        ans = nums[0]
        for i in range(1, n):
            if nums[i] >= 0:
                curMax = max(nums[i], preMax * nums[i])
                curMin = min(nums[i], preMin * nums[i])
            else:
                curMax = max(nums[i], preMin * nums[i])
                curMin = min(nums[i], preMax * nums[i])
            ans = max(ans, curMax)
            # 滚动变量
            preMax = curMax
            preMin = curMin
        return ans
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

时间复杂度:O(n)
空间复杂度:O(1)

解题思路三:0


  • 1

时间复杂度:O(n)
空间复杂度:O(n)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/504661
推荐阅读
相关标签
  

闽ICP备14008679号