当前位置:   article > 正文

Open3d学习计划——高级篇 4(多视角点云配准)

多视角点云配准

Open3d学习计划——高级篇 4(多视角点云配准)

多视角配准是在全局空间中对齐多个几何形状的过程。比较有代表性的是,输入是一组几何形状 { P i } \lbrace P_i\rbrace {Pi}(可以是点云或者RGBD图像)。输出是一组刚性变换 { T i } \lbrace T_i \rbrace {Ti},变换后的点云 { T i P i } \lbrace T_i P_i \rbrace {TiPi} 可以在全局空间中对齐。
Open3d通过姿态图估计提供了多视角配准的接口。具体的技术细节请参考[Choi2015].

输入

教程代码的第一部分是从三个文件中读取三个点云数据,这三个点云将被降采样和可视化,可以看出他们三个是不对齐的。

def load_point_clouds(voxel_size=0.0):
    pcds = []
    for i in range(3):
        pcd = o3d.io.read_point_cloud("../../TestData/ICP/cloud_bin_%d.pcd" % i)
        pcd_down = pcd.voxel_down_sample(voxel_size=voxel_size)
        pcds.append(pcd_down)
    return pcds
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
voxel_size = 0.02
pcds_down = load_point_clouds(voxel_size)
o3d.visualization.draw_geometries(pcds_down)
  • 1
  • 2
  • 3

在这里插入图片描述

姿态图

姿态图有两个关键的基础:节点和边。节点是与姿态矩阵 T i T_i Ti关联的一组几何体 P i P_i Pi,通过该矩阵能够将 P i P_i Pi转换到全局空间。集和 { T i } \lbrace T_i \rbrace {Ti}是一组待优化的未知的变量。
PoseGraph.nodesPoseGraphNode的列表。我们设 P 0 P_0 P0的空间是全局空间。因此 T 0 T_0 T0是单位矩阵。其他的姿态矩阵通过累加相邻节点之间的变换来初始化。相邻节点通常都有着大规模的重叠并且能够通过Point-to-plane ICP来配准。

姿态图的边连接着两个重叠的节点(几何形状)。每个边都包含着能够将源几何 P i P_i Pi 和目标几何 P j P_j Pj对齐的变换矩阵 T i , j T_{i,j} Ti,j。本教程使用Point-to-plane ICP来估计变换矩阵。在更复杂的情况中,成对的配准问题一般是通过全局配准来解决的。

[Choi2015] 观察到,成对的配准容易出错。甚至错误的匹配会大于正确的匹配,因此,他们将姿态图的边分为两类。Odometry edges连接着邻域节点,使用局部配准的方式比如ICP就可以对齐他们。Loop closure edges连接着非邻域的节点。该对齐是通过不太可靠的全局配准找到的。在Open3d中,这两类边缘通过PoseGraphEdge初始化程序中的uncertain参数来确定。

除了旋转矩阵 T i T_i Ti以外,用户也可以去设置每一条边的信息矩阵 A i A_i Ai。如果是通过
get_information_matrix_from_point_clouds设置的信息矩阵 A i A_i Ai,那么姿态图的边的损失将以 line process weight 近似于两组节点对应点集的RMSE。有关详细细节请参考[Choi2015]
the Redwood registration benchmark

下面的脚本创造了具有三个节点和三个边的姿态图。这些边里,两个是odometry edges(uncertain = False),一个是loop closure edge(uncertain = True)。

def pairwise_registration(source, target):
    print("Apply point-to-plane ICP")
    icp_coarse = o3d.registration.registration_icp(
        source, target, max_correspondence_distance_coarse, np.identity(4),
        o3d.registration.TransformationEstimationPointToPlane())
    icp_fine = o3d.registration.registration_icp(
        source, target, max_correspondence_distance_fine,
        icp_coarse.transformation,
        o3d.registration.TransformationEstimationPointToPlane())
    transformation_icp = icp_fine.transformation
    information_icp = o3d.registration.get_information_matrix_from_point_clouds(
        source, target, max_correspondence_distance_fine,
        icp_fine.transformation)
    return transformation_icp, information_icp


def full_registration(pcds, max_correspondence_distance_coarse,
                      max_correspondence_distance_fine):
    pose_graph = o3d.registration.PoseGraph()
    odometry = np.identity(4)
    pose_graph.nodes.append(o3d.registration.PoseGraphNode(odometry))
    n_pcds = len(pcds)
    for source_id in range(n_pcds):
        for target_id in range(source_id + 1, n_pcds):
            transformation_icp, information_icp = pairwise_registration(
                pcds[source_id], pcds[target_id])
            print("Build o3d.registration.PoseGraph")
            if target_id == source_id + 1:  # odometry case
                odometry = np.dot(transformation_icp, odometry)
                pose_graph.nodes.append(
                    o3d.registration.PoseGraphNode(np.linalg.inv(odometry)))
                pose_graph.edges.append(
                    o3d.registration.PoseGraphEdge(source_id,
                                                   target_id,
                                                   transformation_icp,
                                                   information_icp,
                                                   uncertain=False))
            else:  # loop closure case
                pose_graph.edges.append(
                    o3d.registration.PoseGraphEdge(source_id,
                                                   target_id,
                                                   transformation_icp,
                                                   information_icp,
                                                   uncertain=True))
    return pose_graph
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
print("Full registration ...")
max_correspondence_distance_coarse = voxel_size * 15
max_correspondence_distance_fine = voxel_size * 1.5
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
    pose_graph = full_registration(pcds_down,
                                   max_correspondence_distance_coarse,
                                   max_correspondence_distance_fine)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

Full registration …
Apply point-to-plane ICP
Build o3d.registration.PoseGraph
Apply point-to-plane ICP
Build o3d.registration.PoseGraph
Apply point-to-plane ICP
Build o3d.registration.PoseGraph

Open3d使用函数global_optimization进行姿态图估计,可以选择两种类型的优化算法,分别是GlobalOptimizationGaussNewtonGlobalOptimizationLevenbergMarquardt。比较推荐后一种的原因是因为它具有比较好的收敛性。GlobalOptimizationConvergenceCriteria类可以用来设置最大迭代次数和别的优化参数。

GlobalOptimizationOption定于了两个参数。max_correspondence_distance定义了对应阈值。edge_prune_threshold是修剪异常边缘的阈值。reference_node是被视为全局空间的节点ID。

print("Optimizing PoseGraph ...")
option = o3d.registration.GlobalOptimizationOption(
    max_correspondence_distance=max_correspondence_distance_fine,
    edge_prune_threshold=0.25,
    reference_node=0)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
    o3d.registration.global_optimization(
        pose_graph, o3d.registration.GlobalOptimizationLevenbergMarquardt(),
        o3d.registration.GlobalOptimizationConvergenceCriteria(), option)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Optimizing PoseGraph …

全局优化在姿态图上执行两次。 第一遍将考虑所有边缘的情况优化原始姿态图的姿态,并尽量区分不确定边缘之间的错误对齐。这些错误对齐将会产生小的 line process weights,他们将会在第一遍被剔除。第二遍将会在没有这些边的情况下运行,产生更紧密地全局对齐效果。在这个例子中,所有的边都将被考虑为真实的匹配,所以第二遍将会立即终止。

可视化操作

使用```draw_geometries``函数可视化变换点云。

print("Transform points and display")
for point_id in range(len(pcds_down)):
    print(pose_graph.nodes[point_id].pose)
    pcds_down[point_id].transform(pose_graph.nodes[point_id].pose)
o3d.visualization.draw_geometries(pcds_down)
  • 1
  • 2
  • 3
  • 4
  • 5

Transform points and display
[[ 1.00000000e+00 -2.50509994e-19 0.00000000e+00 0.00000000e+00]
[-3.35636805e-20 1.00000000e+00 1.08420217e-19 -8.67361738e-19]
[-1.08420217e-19 -1.08420217e-19 1.00000000e+00 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]
[[ 0.8401689 -0.14645453 0.52217554 0.34785474]
[ 0.00617659 0.96536804 0.2608187 -0.39427149]
[-0.54228965 -0.2159065 0.81197679 1.7300472 ]
[ 0. 0. 0. 1. ]]
[[ 0.96271237 -0.07178412 0.2608293 0.3765243 ]
[-0.00196124 0.96227508 0.27207136 -0.48956598]
[-0.27051994 -0.26243801 0.92625334 1.29770817]
[ 0. 0. 0. 1. ]]

在这里插入图片描述

得到合并的点云

PointCloud是可以很方便的使用+来合并两组点云成为一个整体。合并之后,将会使用voxel_down_sample进行重新采样。建议在合并之后对点云进行后处理,因为这样可以减少重复的点后者较为密集的点。

pcds = load_point_clouds(voxel_size)
pcd_combined = o3d.geometry.PointCloud()
for point_id in range(len(pcds)):
    pcds[point_id].transform(pose_graph.nodes[point_id].pose)
    pcd_combined += pcds[point_id]
pcd_combined_down = pcd_combined.voxel_down_sample(voxel_size=voxel_size)
o3d.io.write_point_cloud("multiway_registration.pcd", pcd_combined_down)
o3d.visualization.draw_geometries([pcd_combined_down])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

Note:
尽管这个教程展示的点云的多视角配准,但是相同的处理步骤可以应用于RGBD图像,请参看 Make fragments 示例。

关于翻译大家有更好的意见欢迎评论一起学习!!!

欢迎大家加入知识星球一起学习。

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/95561
推荐阅读
相关标签
  

闽ICP备14008679号