赞
踩
Apache Spark 是一种用于大数据工作负载的分布式开源处理系统。它使用内存中缓存和优化的查询执行方式,可针对任何规模的数据进行快速分析查询。Apache Spark 提供了简明、一致的 Java、Scala、Python 和 R 应用程序编程接口 (API)。
Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 拥有Hadoop MapReduce所具有的优点,但不同的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
一个完整的Spark应用程序(Application),在提交集群运行时,它涉及到如下图所示的组件:
一般包括一个主节点(任务控制节点)和多个从节点(工作节点),每个任务(Job)会被切分成多个阶段(Stage),每个阶段并发多线程执行,结束后返回到主节点。
PySpark是Apache Spark的Python API。它使您能够使用Python在分布式环境中执行实时、大规模的数据处理。PySpark支持Spark的所有功能,如Spark SQL、DataFrames、结构化流、机器学习(MLlib)和Spark Core。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。