当前位置:   article > 正文

进入数据结构的世界_有一算法的计算次数f(n)=1000000

有一算法的计算次数f(n)=1000000

一、什么是数据结构

数据结构是计算机存储、组织数据的方式。(相互之间存在一种或多种特定关系的数据元素的集合)

二、什么是算法

算法就是一系列的计算步骤,用来吧输入数据转换成输出结果。(算法就是有良好的计算过程,把一个或一组的值输入,并产出一个或一组的值输出)

三、如何去学习数据结构和算法

现在的公司对学生的代码能力越来越高,数据结构和算法的题目越来越难。算法的能力在短期内是不能够快速提升的,需要进行算法训练的积累。校招的时候,笔试很难,为了能够找到工作,还需要对数据结构和算法早早的准备,多去训练算法能力。
数据结构和算法对于初学者来说很难。但 是,古话说的好,世上无难事,只怕有心人。不管数据结构和算法有多难,我们都要硬着头皮去学。我相信,只要多学多练,学习数据结构和算法就会越来越简单。

四、算法的时间复杂度和空间复杂度

时间空间这两个维度能够衡量算法的好坏,

4.1 算法效率

算法在编写成可执行程序后,运行程序需要耗费空间资源时间资源。因此,衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,这就是时间复杂度空间复杂度

时间复杂度主要是衡量算法的运行快慢,而空间复杂度主要是衡量一个算法运行时所需要的额外空间。(计算机发展的早期,计算机存储的容量很小,我们对空间复杂度很在乎。但是经过计算机行业的快速发展,计算机存储的容量已经达到了很高的地步。所以我们今天已经不需要特别在关注算法的空间复杂度)

4.2 大O的渐进表示法

大O符号(Big O notation):用于描述函数渐进行为的数学符号
大O的渐进表示法的推导方法:

1、用常数1取代运行时间中所以的加法常数。
2、在运行次数函数中,只保留最高阶项。
3、如果最高价项存在且不是1,则去除与这个项相乘的常数,得到的结果就是大O阶。

算法的时间复杂度存在最好、平均和最坏情况:

最好情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最坏情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N的数组中搜索一个数据x

最好情况:1次找到
平均情况:N/2次找到
最坏情况:N次找到

实际中,我们关注的都是算法的最坏情况所以,数组中搜索数据的时间复杂度为O(N)

4.3 时间复杂度

时间复杂度的定义:
一个算法执行所消耗的时间,从理论上说,是不能够算出来得,只有把程序放在机器上跑,才能够知道消耗的时间。一个算法所花费的时间与其中语句的执行次数成正比,算法的基本操作的执行次数,就是算法的时间复杂度。
案例1:

找到基本语句与问题规模n的数学表达式,算出该算法的时间复杂度。

//计算++count语句执行的次数
#include <stdio.h>
int main()
{
    int n = 0;
    scanf("%d", &n);
  
    int count = 0;

    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
            ++count;
    }
    for (int i = 0; i < 2 * n; i++)
    {
        ++count;
    }
    int m = 10;
    while (m--)
    {
        ++count;
    }
    printf("%d\n", count);
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

基本操作次数:
F(n)=n^2+2*n+10

  • n=10 F(n)=130
  • n=100 F(n)=10210
  • n=1000 F(n)=1002010

用大O的渐进表示法,时间复杂度为O(N^2)

  • n=10 F(n)=100
  • n=100 F(n)=10000
  • n=1000 F(n)=1000000

实际中我们计算时间复杂度时,并不一定计算精准的时间复杂度,而只需要大概执行次数,这里我们使用大O的渐进表示法。

通过上面我们可以发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
案例2:

计算Fun2的时间复杂度
void Fun2()
{
    int N;
    scanf("%d", &N);
    int count = 0;
    for (int i = 0; i < 2 * N; i++)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
    printf("%d\n", count);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

Fun2的时间复杂度为:
F(N)=2*N+10
大O的渐进表示法:时间复杂度为O(N)
案例3:

//计算Fun3的时间复杂度
void Fun3()
{
    int N, M;
    scanf("%d%d", &N, &M);
    int count = 0;
    for (int i = 0; i < N; i++)
    {
        ++count;
    }
    for (int j = 0; j < M; j++)
    {
        ++count;
    }
    printf("%d\n", count);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

Fun2的时间复杂度为:
F(N)=N+M
大O的渐进表示法:时间复杂度为O(N)
案例4:

//二分查找的思想
void Fun4()
{
    int m = 0;
    int arr[10] = { 1,2,4,6,8,11,55,66,77,88};
    int n;
    printf("请输入要查找的数:\n");
    scanf("%d", &n);
    int begin = 0;
    int end = 9;
    while (begin <= end)
    {
        int mid = begin + (end - begin)/2;
        if (arr[mid] < n)
            begin = mid + 1;
        else if (arr[mid] > n)
            end = mid - 1;
        else
        {
            printf("找到了\n");
            printf("%d", arr[mid]);
            m = 1;
            break;
    }
    }
    if(m==0)
    printf("没找到\n");
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

区间数据个数:
N
N/2
N/2/2
…………
N/2/2/2……/2=1

最坏的情况,查找区间缩放只剩一个值时,就是坏得,
假设查找x次,2^x=N,所以x=logN。

大O的渐进表示法:时间复杂度为O(logN).

案例5:

//斐波那契递归的复杂度
#include <stdio.h>
int Fun5(size_t n)
{
    if (n < 3)
        return 1;
    return Fun5(n - 2) + Fun5(n - 1);

}
int main()
{
    int n = 7;
    int sum=Fun5(n);
    printf("%d\n", sum);
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

打印结果:
在这里插入图片描述
递归展开图:
在这里插入图片描述
1次(2^ 0)
2次(2^ 1)
4次(2^ 2)
8次(2^ 3)
……
2^(N-1)次
通过函数递归图分析基本操作递归了2 ^N-1次,
大O的渐进表示法:时间复杂度为O (2 ^N)。

4.4 空间复杂度

空间复杂度的定义:
一个算法在运行过程中临时占用存储空间大小的量度。(空间复杂度算的是变量的个数)
注意:
函数运行时所需要的栈空间(存储函数、局部变量、一些寄存器信息等)在编译期间就已经确定好了,因此,空间复杂度主要就是函数在运行的时候申请的额外空间来确定的。
案例1:

//计算BubbleSort函数的空间复杂度
void BubbleSort(int* a, int n)
{
    assert(a);
    for (int end = n; end > 0; end--)
    {
        int exchange = 0;
        for (int i = 1; i < n; i++)
        {
            if (a[i - 1] > a[i])
            {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        }
        //不需要循环了
        if (exchange == 0)
            break;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

可以看出使用了常数个额外空间,所以空间复杂度为O(1)
案例2:

//看返回斐波那契数列的前n项,计算Fibonac的空间复杂度
int* Fibonac(int n)
{
    if (n == 0)
        return NULL;
    int* fibar = (int*)malloc(sizeof(int) * (n + 1));
    fibar[0] = 0;
    fibar[1] = 1;
    for (int i = 2; i <= n; i++)
    {
        fibar[i] = fibar[i - 1] + fibar[i - 2];
   }
    return fibar[i];
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

动态开辟了n+1个空间,大O的渐进表示法为O(N);

4.5 常见复杂度对比

在这里插入图片描述

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/518098
推荐阅读
相关标签
  

闽ICP备14008679号