赞
踩
BERT(Bidirectional Encoder Representations from Transformers)作为自然语言处理领域的里程碑,通过双向Transformer编码器捕捉文本的深层语义,革新了下游NLP任务的处理方式。本文旨在深入探讨BERT模型的预训练与微调流程,通过详尽的代码示例,引导读者从理论到实践,掌握这一强大模型的使用精髓。
BERT基于Transformer架构,引入了两个关键创新:双向上下文理解和掩码语言模型(Masked Language Model, MLM)。通过在训练过程中随机掩盖部分输入词并预测这些词,BERT学会了在理解整个句子的背景下推断每个词的含义。接下来,我们将分步解析BERT的预训练和微调流程。
BERT的预训练主要包含两个任务:掩码语言模型(MLM)和下一句预测(Next Sentence Prediction, NSP)。虽然预训练通常在大规模语料上完成,且资源消耗较大,但这里我们仅概述其原理及代码逻辑框架。
from transformers import BertForMaskedLM, BertTokeni
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。