当前位置:   article > 正文

ChatGPT 中的人类反馈强化学习 (RLHF) 实战,看这篇就够了_sft model

sft model

团队博客: CSDN AI小组


相关阅读

  • ChatGPT 简介
  • 大语言模型浅探一
  • 关于 ChatGPT 必看的 10 篇论文
  • 从 ELMo 到 ChatGPT:历数 NLP 近 5 年必看大模型

1 前言
在当今数字化的时代,ChatGPT 的火热程度不断升级。ChatGPT 可以处理复杂的语言任务,从而解放人力资源,提高工作效率,减少成本。ChatGPT 的先进技术和广泛应用,使得它成为了当今最炙手可热的人工智能技术之一。无论是企业、学术机构,还是科技爱好者,都对 ChatGPT 的应用前景充满期待。

在这样的背景之下,CSDN AI 团队也想对 ChatGPT 进行简单的复现。根据ChatGPT 官方博客可知,ChatGPT的训练方法与 InstructGPT 的训练方法基本一致 (如图1所示),只是使用的数据集不一样。故在训练方法上,我们主要参考 InstructGPT 进行复现,基础模型使用的是 RWKV,拆分后共包含以下四个阶段:

  • (1) 语言模型预训练 (Language Model Pre-training);
  • (2) 有监督指令微调 (Supervised Fine-Tuning, SFT);
  • (3) 奖励模型的训练 (Reward Modeling, RM);
  • (4) 使用近端策略优化算法进行强化学习 (Proximal Policy Optimization, PPO).

第 (1)、(2) 阶段的 Pre-training 和 SFT 由 @zxm2015 完成,可参考文章 大语言模型浅探一。本文主要介绍第 (3)、(4) 阶段的内容,即人类反馈强化学习 (Reinforceme

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号