赞
踩
HashMap 源码和底层原理在现在面试中是必问的。因此,我们非常有必要搞清楚它的底层实现和思想,才能在面试中对答如流,跟面试官大战三百回合。文章较长,介绍了很多原理性的问题,希望对你有所帮助~
**说明:**本篇主要以JDK1.8的源码来分析,顺带讲下和JDK1.7的一些区别。
HashMap存储结构
这里需要区分一下,JDK1.7和 JDK1.8之后的 HashMap 存储结构。在JDK1.7及之前,是用数组加链表的方式存储的。
但是,众所周知,当链表的长度特别长的时候,查询效率将直线下降,查询的时间复杂度为 O(n)。因此,JDK1.8 把它设计为达到一个特定的阈值之后,就将链表转化为红黑树。
这里简单说下红黑树的特点:
由于红黑树,是一个自平衡的二叉搜索树,因此可以使查询的时间复杂度降为O(logn)。(红黑树不是本文重点,不了解的童鞋可自行查阅相关资料哈)
HashMap 结构示意图:
在 HashMap源码中,比较重要的常用变量,主要有以下这些。还有两个内部类来表示普通链表的节点和红黑树节点。
-
- //默认的初始化容量为16,必须是2的n次幂
- static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
-
- //最大容量为 2^30
- static final int MAXIMUM_CAPACITY = 1 << 30;
-
- //默认的加载因子0.75,乘以数组容量得到的值,用来表示元素个数达到多少时,需要扩容。
- //为什么设置 0.75 这个值呢,简单来说就是时间和空间的权衡。
- //若小于0.75如0.5,则数组长度达到一半大小就需要扩容,空间使用率大大降低,
- //若大于0.75如0.8,则会增大hash冲突的概率,影响查询效率。
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
-
- //刚才提到了当链表长度过长时,会有一个阈值,超过这个阈值8就会转化为红黑树
- static final int TREEIFY_THRESHOLD = 8;
-
- //当红黑树上的元素个数,减少到6个时,就退化为链表
- static final int UNTREEIFY_THRESHOLD = 6;
-
- //链表转化为红黑树,除了有阈值的限制,还有另外一个限制,需要数组容量至少达到64,才会树化。
- //这是为了避免,数组扩容和树化阈值之间的冲突。
- static final int MIN_TREEIFY_CAPACITY = 64;
-
- //存放所有Node节点的数组
- transient Node<K,V>[] table;
-
- //存放所有的键值对
- transient Set<Map.Entry<K,V>> entrySet;
-
- //map中的实际键值对个数,即数组中元素个数
- transient int size;
-
- //每次结构改变时,都会自增,fail-fast机制,这是一种错误检测机制。
- //当迭代集合的时候,如果结构发生改变,则会发生 fail-fast,抛出异常。
- transient int modCount;
-
- //数组扩容阈值
- int threshold;
-
- //加载因子
- final float loadFactor;
-
- //普通单向链表节点类
- static class Node<K,V> implements Map.Entry<K,V> {
- //key的hash值,put和get的时候都需要用到它来确定元素在数组中的位置
- final int hash;
- final K key;
- V value;
- //指向单链表的下一个节点
- Node<K,V> next;
-
- Node(int hash, K key, V value, Node<K,V> next) {
- this.hash = hash;
- this.key = key;
- this.value = value;
- this.next = next;
- }
- }
-
- //转化为红黑树的节点类
- static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
- //当前节点的父节点
- TreeNode<K,V> parent;
- //左孩子节点
- TreeNode<K,V> left;
- //右孩子节点
- TreeNode<K,V> right;
- //指向前一个节点
- TreeNode<K,V> prev; // needed to unlink next upon deletion
- //当前节点是红色或者黑色的标识
- boolean red;
- TreeNode(int hash, K key, V val, Node<K,V> next) {
- super(hash, key, val, next);
- }
- }
HashMap有四个构造函数可供我们使用,一起来看下:
- //默认无参构造,指定一个默认的加载因子
- public HashMap() {
- this.loadFactor = DEFAULT_LOAD_FACTOR;
- }
-
- //可指定容量的有参构造,但是需要注意当前我们指定的容量并不一定就是实际的容量,下面会说
- public HashMap(int initialCapacity) {
- //同样使用默认加载因子
- this(initialCapacity, DEFAULT_LOAD_FACTOR);
- }
-
- //可指定容量和加载因子,但是笔者不建议自己手动指定非0.75的加载因子
- public HashMap(int initialCapacity, float loadFactor) {
- if (initialCapacity < 0)
- throw new IllegalArgumentException("Illegal initial capacity: " +
- initialCapacity);
- if (initialCapacity > MAXIMUM_CAPACITY)
- initialCapacity = MAXIMUM_CAPACITY;
- if (loadFactor <= 0 || Float.isNaN(loadFactor))
- throw new IllegalArgumentException("Illegal load factor: " +
- loadFactor);
- this.loadFactor = loadFactor;
- //这里就是把我们指定的容量改为一个大于它的的最小的2次幂值,如传过来的容量是14,则返回16
- //注意这里,按理说返回的值应该赋值给 capacity,即保证数组容量总是2的n次幂,为什么这里赋值给了 threshold 呢?
- //先卖个关子,等到 resize 的时候再说
- this.threshold = tableSizeFor(initialCapacity);
- }
-
- //可传入一个已有的map
- public HashMap(Map<? extends K, ? extends V> m) {
- this.loadFactor = DEFAULT_LOAD_FACTOR;
- putMapEntries(m, false);
- }
-
- //把传入的map里边的元素都加载到当前map
- final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
- int s = m.size();
- if (s > 0) {
- if (table == null) { // pre-size
- float ft = ((float)s / loadFactor) + 1.0F;
- int t = ((ft < (float)MAXIMUM_CAPACITY) ?
- (int)ft : MAXIMUM_CAPACITY);
- if (t > threshold)
- threshold = tableSizeFor(t);
- }
- else if (s > threshold)
- resize();
- for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
- K key = e.getKey();
- V value = e.getValue();
- //put方法的具体实现,后边讲
- putVal(hash(key), key, value, false, evict);
- }
- }
- }
上边的第三个构造函数中,调用了 tableSizeFor 方法,这个方法是怎么实现的呢?
- static final int tableSizeFor(int cap) {
- int n = cap - 1;
- n |= n >>> 1;
- n |= n >>> 2;
- n |= n >>> 4;
- n |= n >>> 8;
- n |= n >>> 16;
- return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
- }
可以看到这个方法是针对整型数据进行的操作!
int n = cap - 1;
刚开始看到这个操作或许会有些懵,不知道为什么要减去1,实际上这只是针对二的整数幂进行的退位操作,后面我会给出解释。
先单独看这段代码:
- 假设 n = 5时
- n |= n >>> 1;
- 0000 0101
- 0000 0010
- 0000 0111
-
- n |= n >>> 2;
- 0000 0111
- 0000 0001
- 0000 0111
-
- n |= n >>> 4;
- 0000 0111
- 0000 0000
- 0000 0111
-
- ...
- 最后无符号右移再或等结果都是
- 0000 0111
-
- 这样就得到了5最高非0位下的最大值
- 即 0000 0111
- 对其加一的结果就是 0000 1000
- 即大于5的最小二的整数幂 8
其实这个算法的思路就是将该数字的最高非0位后面全置为1!其利用了“拷贝”的方式:
- n= ; 1000 0000 0000 0000 0000 0000 0000 0000
- n |= n >>> 1; 1100 0000 0000 0000 0000 0000 0000 0000 将最高位拷贝到下1位
- n |= n >>> 2; 1111 0000 0000 0000 0000 0000 0000 0000 将上述2位拷贝到紧接着的2位
- n |= n >>> 4; 1111 1111 0000 0000 0000 0000 0000 0000 将上述4位拷贝到紧接着的4位
- n |= n >>> 8; 1111 1111 1111 1111 0000 0000 0000 0000 将上述8位拷贝到紧接着的8位
- n |= n >>> 16; 1111 1111 1111 1111 1111 1111 1111 1111 将上述16位拷贝到紧接着的16位
由上面可以看出其通过这五次的计算,最后的结果刚好可以填满32位的空间,也就是一个int类型的空间,这就是为什么必须是int类型,且最多只无符号右移16位!
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
其中的MAXIMUM_CAPACITY 是HashMap的最大空间为1 << 30,即2^30刚好一个G,所以HashMap大小不是取决于堆内存!
接下来就来讨论为什么要减一:
- 以 n = 8为例
- 0000 1000
- 最后的结果为:
- 0000 1111
- 对其加一得到的是16,显然没有把自身包含进去
-
- 若减一
- n = 7
- 0000 0111
- 最后的结果为:
- 0000 0111
- 对其加一得到的是8
所以在一开始进行减一的操作是为了防止出现二的整数幂时,没有把自身包含进范围!
- //put方法,会先调用一个hash()方法,得到当前key的一个hash值,
- //用于确定当前key应该存放在数组的哪个下标位置
- //这里的 hash方法,我们姑且先认为是key.hashCode(),其实不是的,一会儿细讲
- public V put(K key, V value) {
- return putVal(hash(key), key, value, false, true);
- }
-
- //把hash值和当前的key,value传入进来
- //这里onlyIfAbsent如果为true,表明不能修改已经存在的值,因此我们传入false
- //evict只有在方法 afterNodeInsertion(boolean evict) { }用到,可以看到它是一个空实现,因此不用关注这个参数
- final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
- boolean evict) {
- Node<K,V>[] tab; Node<K,V> p; int n, i;
- //判断table是否为空,如果空的话,会先调用resize扩容
- if ((tab = table) == null || (n = tab.length) == 0)
- n = (tab = resize()).length;
- //根据当前key的hash值找到它在数组中的下标,判断当前下标位置是否已经存在元素,
- //若没有,则把key、value包装成Node节点,直接添加到此位置。
- // i = (n - 1) & hash 是计算下标位置的,为什么这样算,后边讲
- if ((p = tab[i = (n - 1) & hash]) == null)
- tab[i] = newNode(hash, key, value, null);
- else {
- //如果当前位置已经有元素了,分为三种情况。
- Node<K,V> e; K k;
- //1.当前位置元素的hash值等于传过来的hash,并且他们的key值也相等,
- //则把p赋值给e,跳转到①处,后续需要做值的覆盖处理
- if (p.hash == hash &&
- ((k = p.key) == key || (key != null && key.equals(k))))
- e = p;
- //2.如果当前是红黑树结构,则把它加入到红黑树
- else if (p instanceof TreeNode)
- e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
- else {
- //3.说明此位置已存在元素,并且是普通链表结构,则采用尾插法,把新节点加入到链表尾部
- for (int binCount = 0; ; ++binCount) {
- if ((e = p.next) == null) {
- //如果头结点的下一个节点为空,则插入新节点
- p.next = newNode(hash, key, value, null);
- //如果在插入的过程中,链表长度超过了8,则转化为红黑树
- if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
- treeifyBin(tab, hash);
- //插入成功之后,跳出循环,跳转到①处
- break;
- }
- //若在链表中找到了相同key的话,直接退出循环,跳转到①处
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- break;
- p = e;
- }
- }
- //①
- //说明发生了碰撞,e代表的是旧值,因此节点位置不变,但是需要替换为新值
- if (e != null) { // existing mapping for key
- V oldValue = e.value;
- //用新值替换旧值,并返回旧值。
- if (!onlyIfAbsent || oldValue == null)
- e.value = value;
- //看方法名字即可知,这是在node被访问之后需要做的操作。其实此处是一个空实现,
- //只有在 LinkedHashMap才会实现,用于实现根据访问先后顺序对元素进行排序,hashmap不提供排序功能
- // Callbacks to allow LinkedHashMap post-actions
- //void afterNodeAccess(Node<K,V> p) { }
- afterNodeAccess(e);
- return oldValue;
- }
- }
- //fail-fast机制
- ++modCount;
- //如果当前数组中的元素个数超过阈值,则扩容
- if (++size > threshold)
- resize();
- //同样的空实现
- afterNodeInsertion(evict);
- return null;
- }
前面 put 方法中说到,需要先把当前key进行哈希处理,我们看下这个方法是怎么实现的。
- static final int hash(Object key) {
- int h;
- return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
- }
这里,会先判断key是否为空,若为空则返回0。这也说明了hashMap是支持key传 null 的。若非空,则先计算key的hashCode值,赋值给h,然后把h右移16位,并与原来的h进行异或处理。为什么要这样做,这样做有什么好处呢?
我们知道,hashCode()方法继承自父类Object,它返回的是一个 int 类型的数值,可以保证同一个应用单次执行的每次调用,返回结果都是相同的(这个说明可以在hashCode源码上找到),这就保证了hash的确定性。在此基础上,再进行某些固定的运算,肯定结果也是可以确定的。
我随便运行一段程序,把它的 hashCode的二进制打印出来,如下。
- public static void main(String[] args) {
- Object o = new Object();
- int hash = o.hashCode();
- System.out.println(hash);
- System.out.println(Integer.toBinaryString(hash));
-
- }
- //1836019240
- //1101101011011110110111000101000
然后,进行 (h = key.hashCode()) ^ (h >>> 16) 这一段运算。
- //h原来的值
- 0110 1101 0110 1111 0110 1110 0010 1000
- //无符号右移16位,其实相当于把低位16位舍去,只保留高16位
- 0000 0000 0000 0000 0110 1101 0110 1111
- //然后高16位和原 h进行异或运算
- 0110 1101 0110 1111 0110 1110 0010 1000
- ^
- 0000 0000 0000 0000 0110 1101 0110 1111
- =
- 0110 1101 0110 1111 0000 0011 0100 0111
可以看到,其实相当于,我们把高16位值和当前h的低16位进行了混合,这样可以尽量保留高16位的特征,从而降低哈希碰撞的概率
思考一下,为什么这样做,就可以降低哈希碰撞的概率呢?先别着急,我们需要结合 i = (n - 1) & hash 这一段运算来理解。
- //②
- //这是 put 方法中用来根据hash()值寻找在数组中的下标的逻辑,
- //n为数组长度, hash为调用 hash()方法混合处理之后的hash值。
- i = (n - 1) & hash
我们知道,如果给定某个数值,去找它在某个数组中的下标位置时,直接用模运算就可以了(假设数组值从0开始递增)。如,我找 14 在数组长度为16的数组中的下标,即为 14 % 16,等于14 。 18的位置即为 18%16,等于2
而②中,就是取模运算的位运算形式。以18%16为例
//18的二进制
0001 0010
//16 -1 即 15的二进制
0000 1111
//与运算之后的结果为
0000 0010
// 可以看到,上边的结果转化为十进制就是 2 。
//其实我们会发现一个规律,因为n是2的n次幂,因此它的二进制表现形式肯定是类似于
0001 0000
//这样的形式,只有一个位是1,其他位都是0。而它减 1 之后的形式就是类似于
0000 1111
//这样的形式,高位都是0,低位都是1,因此它和任意值进行与运算,结果值肯定在这个区间内
0000 0000 ~ 0000 1111
//也就是0到15之间,(以n为16为例)
//因此,这个运算就可以实现取模运算,而且位运算还有个好处,就是速度比较快。
为什么高低位异或运算可以减少哈希碰撞
我们想象一下,假如用 key 原来的hashCode值,直接和 (n-1) 进行与运算来求数组下标,而不进行高低位混合运算,会产生什么样的结果。
//例如我有另外一个h2,和原来的 h相比较,高16位有很大的不同,但是低16位相似度很高,甚至相同的话。
//原h值
0110 1101 0110 1111 0110 1110 0010 1000
//另外一个h2值
0100 0101 1110 1011 0110 0110 0010 1000
// n -1 ,即 15 的二进制
0000 0000 0000 0000 0000 0000 0000 1111
//可以发现 h2 和 h 的高位不相同,但是低位相似度非常高。
//他们分别和 n -1 进行与运算时,得到的结果却是相同的。(此处n假设为16)
//因为 n-1 的高16位都是0,不管 h 的高 16 位是什么,与运算之后,都不影响最终结果,高位一定全是 0
//因此,哈希碰撞的概率就大大增加了,并且 h 的高16 位特征全都丢失了。
爱思考的同学可能就会有疑问了,我进行高低16位混合运算,是可以的,这样可以保证尽量减少高区位的特征。那么,为什么选择用异或运算呢,我用与、或、非运算不行吗?
这是有一定的道理的。我们看一个表格,就能明白了
可以看到两个值进行与运算,结果会趋向于0;或运算,结果会趋向于1;而只有异或运算,0和1的比例可以达到1:1的平衡状态。(非呢?别扯犊子了,两个值怎么做非运算。。。)
所以,异或运算之后,可以让结果的随机性更大,而随机性大了之后,哈希碰撞的概率当然就更小了。
以上,就是为什么要对一个hash值进行高低位混合,并且选择异或运算来混合的原因。
在上边 put 方法中,我们会发现,当数组为空的时候,会调用 resize 方法,当数组的 size 大于阈值的时候,也会调用 resize方法。 那么看下 resize 方法都做了哪些事情吧
- final Node<K,V>[] resize() {
- //旧数组
- Node<K,V>[] oldTab = table;
- //旧数组的容量
- int oldCap = (oldTab == null) ? 0 : oldTab.length;
- //旧数组的扩容阈值,注意看,这里取的是当前对象的 threshold 值,下边的第2种情况会用到。
- int oldThr = threshold;
- //初始化新数组的容量和阈值,分三种情况讨论。
- int newCap, newThr = 0;
- //1.当旧数组的容量大于0时,说明在这之前肯定调用过 resize扩容过一次,才会导致旧容量不为0。
- //为什么这样说呢,之前我在 tableSizeFor 卖了个关子,需要注意的是,它返回的值是赋给了 threshold 而不是 capacity。
- //我们在这之前,压根就没有在任何地方看到过,它给 capacity 赋初始值。
- if (oldCap > 0) {
- //容量达到了最大值
- if (oldCap >= MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return oldTab;
- }
- //新数组的容量和阈值都扩大原来的2倍
- else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
- oldCap >= DEFAULT_INITIAL_CAPACITY)
- newThr = oldThr << 1; // double threshold
- }
- //2.到这里,说明 oldCap <= 0,并且 oldThr(threshold) > 0,这就是 map 初始化的时候,第一次调用 resize的情况
- //而 oldThr的值等于 threshold,此时的 threshold 是通过 tableSizeFor 方法得到的一个2的n次幂的值(我们以16为例)。
- //因此,需要把 oldThr 的值,也就是 threshold ,赋值给新数组的容量 newCap,以保证数组的容量是2的n次幂。
- //所以我们可以得出结论,当map第一次 put 元素的时候,就会走到这个分支,把数组的容量设置为正确的值(2的n次幂)
- //但是,此时 threshold 的值也是2的n次幂,这不对啊,它应该是数组的容量乘以加载因子才对。别着急,这个会在③处理。
- else if (oldThr > 0) // initial capacity was placed in threshold
- newCap = oldThr;
- //3.到这里,说明 oldCap 和 oldThr 都是小于等于0的。也说明我们的map是通过默认无参构造来创建的,
- //于是,数组的容量和阈值都取默认值就可以了,即 16 和 12。
- else { // zero initial threshold signifies using defaults
- newCap = DEFAULT_INITIAL_CAPACITY;
- newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
- }
- //③ 这里就是处理第2种情况,因为只有这种情况 newThr 才为0,
- //因此计算 newThr(用 newCap即16 乘以加载因子 0.75,得到 12) ,并把它赋值给 threshold
- if (newThr == 0) {
- float ft = (float)newCap * loadFactor;
- newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
- (int)ft : Integer.MAX_VALUE);
- }
- //赋予 threshold 正确的值,表示数组下次需要扩容的阈值(此时就把原来的 16 修正为了 12)。
- threshold = newThr;
- @SuppressWarnings({"rawtypes","unchecked"})
- //我们可以发现,在构造函数时,并没有创建数组,在第一次调用put方法,导致resize的时候,才会把数组创建出来。这是为了延迟加载,提高效率。
- Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
- table = newTab;
- //如果原来的数组不为空,那么我们就需要把原来数组中的元素重新分配到新的数组中
- //如果是第2种情况,由于是第一次调用resize,此时数组肯定是空的,因此也就不需要重新分配元素。
- if (oldTab != null) {
- //遍历旧数组
- for (int j = 0; j < oldCap; ++j) {
- Node<K,V> e;
- //取到当前下标的第一个元素,如果存在,则分三种情况重新分配位置
- if ((e = oldTab[j]) != null) {
- oldTab[j] = null;
- //1.如果当前元素的下一个元素为空,则说明此处只有一个元素
- //则直接用它的hash()值和新数组的容量取模就可以了,得到新的下标位置。
- if (e.next == null)
- newTab[e.hash & (newCap - 1)] = e;
- //2.如果是红黑树结构,则拆分红黑树,必要时有可能退化为链表
- else if (e instanceof TreeNode)
- ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
- //3.到这里说明,这是一个长度大于 1 的普通链表,则需要计算并
- //判断当前位置的链表是否需要移动到新的位置
- else { // preserve order
- // loHead 和 loTail 分别代表链表旧位置的头尾节点
- Node<K,V> loHead = null, loTail = null;
- // hiHead 和 hiTail 分别代表链表移动到新位置的头尾节点
- Node<K,V> hiHead = null, hiTail = null;
- Node<K,V> next;
- do {
- next = e.next;
- //如果当前元素的hash值和oldCap做与运算为0,则原位置不变
- if ((e.hash & oldCap) == 0) {
- if (loTail == null)
- loHead = e;
- else
- loTail.next = e;
- loTail = e;
- }
- //否则,需要移动到新的位置
- else {
- if (hiTail == null)
- hiHead = e;
- else
- hiTail.next = e;
- hiTail = e;
- }
- } while ((e = next) != null);
- //原位置不变的一条链表,数组下标不变
- if (loTail != null) {
- loTail.next = null;
- newTab[j] = loHead;
- }
- //移动到新位置的一条链表,数组下标为原下标加上旧数组的容量
- if (hiTail != null) {
- hiTail.next = null;
- newTab[j + oldCap] = hiHead;
- }
- }
- }
- }
- }
- return newTab;
- }
上边还有一个非常重要的运算,我们没有讲解。就是下边这个判断,它用于把原来的普通链表拆分为两条链表,位置不变或者放在新的位置。
if ((e.hash & oldCap) == 0) {} else {}
我们以原数组容量16为例,扩容之后容量为32。说明下为什么这样计算。
还是用之前的hash值举例。
- //e.hash值
- 0110 1101 0110 1111 0110 1110 0010 1000
- //oldCap值,即16
- 0000 0000 0000 0000 0000 0000 0001 0000
- //做与运算,我们会发现结果不是0就是非0,
- //而且它取决于 e.hash 二进制位的倒数第五位是 0 还是 1,
- //若倒数第五位为0,则结果为0,若倒数第五位为1,则结果为非0。
- //那这个和新数组有什么关系呢?
- //别着急,我们看下新数组的容量是32,如果求当前hash值在新数组中的下标,则为
- // e.hash &( 32 - 1) 这样的运算 ,即 hash 与 31 进行与运算,
- 0110 1101 0110 1111 0110 1110 0010 1000
- &
- 0000 0000 0000 0000 0000 0000 0001 1111
- =
- 0000 0000 0000 0000 0000 0000 0000 1000
- //接下来,我们对比原来的下标计算结果和新的下标结果,看图
看下面的图,我们观察,hash值和旧数组进行与运算的结果 ,跟新数组的与运算结果有什么不同。
会发现一个规律:
若hash值的倒数第五位是0,则新下标与旧下标结果相同,都为 0000 1000
若hash值的倒数第五位是1,则新下标(0001 1000)与旧下标(0000 1000)结果值相差了 16 。
因此,我们就可以根据 (e.hash & oldCap == 0) 这个判断的真假来决定,当前元素应该在原来的位置不变,还是在新的位置(原位置 + 16)。
如果,上边的推理还是不明白的话,我再举个简单的例子。
- 18%16=2 18%32=18
- 34%16=2 34%32=2
- 50%16=2 50%32=18
怎么样,发现规律没,有没有那个感觉了?
计算中的18,34 ,50 其实就相当于 e.hash 值,和新旧数组做取模运算,得到的结果,要么就是原来的位置不变,要么就是原来的位置加上旧数组的长度。
有了前面的基础,get方法就比较简单了
- public V get(Object key) {
- Node<K,V> e;
- //如果节点为空,则返回null,否则返回节点的value。这也说明,hashMap是支持value为null的。
- //因此,我们就明白了,为什么hashMap支持Key和value都为null
- return (e = getNode(hash(key), key)) == null ? null : e.value;
- }
-
- final Node<K,V> getNode(int hash, Object key) {
- Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
- //首先要确保数组不能为空,然后取到当前hash值计算出来的下标位置的第一个元素
- if ((tab = table) != null && (n = tab.length) > 0 &&
- (first = tab[(n - 1) & hash]) != null) {
- //若hash值和key都相等,则说明我们要找的就是第一个元素,直接返回
- if (first.hash == hash && // always check first node
- ((k = first.key) == key || (key != null && key.equals(k))))
- return first;
- //如果不是的话,就遍历当前链表(或红黑树)
- if ((e = first.next) != null) {
- //如果是红黑树结构,则找到当前key所在的节点位置
- if (first instanceof TreeNode)
- return ((TreeNode<K,V>)first).getTreeNode(hash, key);
- //如果是普通链表,则向后遍历查找,直到找到或者遍历到链表末尾为止。
- do {
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- } while ((e = e.next) != null);
- }
- }
- //否则,说明没有找到,返回null
- return null;
- }
准确的讲应该是 JDK1.7 的 HashMap 链表会有死循环的可能,因为JDK1.7是采用的头插法,在多线程环境下有可能会使链表形成环状,从而导致死循环。JDK1.8做了改进,用的是尾插法,不会产生死循环。
那么,链表是怎么形成环状的呢?
关于这一点的解释,我会照着源码一步一步的分析变量之间的关系怎么变化的,并有配图哦。
我们从 put()方法开始,最终找到线程不安全的那个方法。这里省略中间不重要的过程,我只把方法的跳转流程贴出来
//添加元素方法 -> 添加新节点方法 -> 扩容方法 -> 把原数组元素重新分配到新数组中
put() --> addEntry() --> resize() --> transfer()
问题就发生在 transfer 这个方法中。
我们假设,原数组容量只有2,其中一条链表上有两个元素 A,B,如下图
现在,有两个线程都执行 transfer 方法。每个线程都会在它们自己的工作内存生成一个newTable 的数组,用于存储变化后的链表,它们互不影响(这里互不影响,指的是两个新数组本身互不影响)。但是,需要注意的是,它们操作的数据却是同一份。
因为,真正的数组中的内容在堆中存储,它们指向的是同一份数据内容。就相当于,有两个不同的引用 X,Y,但是它们都指向同一个对象 Z。这里 X、Y就是两个线程不同的新数组,Z就是堆中的A,B 等元素对象。
假设线程一执行到了上图1中所指的代码①处,恰好 CPU 时间片到了,线程被挂起,不能继续执行了。 记住此时,线程一中记录的 e = A , e.next = B。
然后线程二正常执行,扩容后的数组长度为 4, 假设 A,B两个元素又碰撞到了同一个桶中。然后,通过几次 while 循环后,采用头插法,最终呈现的结构如下:
此时,线程一解挂,继续往下执行。注意,此时线程一,记录的还是 e = A,e.next = B,因为它还未感知到最新的变化。
我们主要关注图1中标注的①②③④处的变量变化:
- /**
- * next = e.next
- * e.next = newTable[i]
- * newTable[i] = e;
- * e = next;
- */
-
- //第一次循环,(伪代码)
- e=A;next=B;
- e.next=null //此时线程一的新数组刚初始化完成,还没有元素
- newTab[i] = A->null //把A节点头插到新数组中
- e=B; //下次循环的e值
第一次循环结束后,线程一新数组的结构如下图:
然后,由于 e=B,不为空,进入第二次循环。
- //第二次循环
- e=B;next=A; //此时A,B的内容已经被线程二修改为 B->A->null,然后被线程一读到,所以B的下一个节点指向A
- e.next=A->null // A->null 为第一次循环后线程一新数组的结构
- newTab[i] = B->A->null //新节点B插入之后,线程一新数组的结构
- e=A; //下次循环的 e 值
第二次循环结束后,线程一新数组的结构如下图:
此时,由于 e=A,不为空,继续循环。
- //第三次循环
- e=A;next=null; // A节点后边已经没有节点了
- e.next= B->A->null // B->A->null 为第二次循环后线程一新数组的结构
- //我们把A插入后,抽象的表达为 A->B->A->null,但是,A只能是一个,不能分身啊
- //因此实际上是 e(A).next指向发生了变化,A的 next 由指向 null 改为指向了 B,
- //而 B 本身又指向A,因此A和B互相指向,成环
- newTab[i] = A->B 且 B->A
- e=next=null; //e此时为空,结束循环
第三次循环结束后,看下图,A的指向由 null ,改为指向为 B,因此 A 和 B 之间成环。
这时,有的同学可能就会问了,就算他们成环了,又怎样,跟死循环有什么关系?
我们看下 get() 方法(最终调用 getEntry 方法),
可以看到查找元素时,只要 e 不为空,就会一直循环查找下去。若有某个元素 C 的 hash 值也落在了和 A,B元素同一个桶中,则会由于, A,B互相指向,e.next 永远不为空,就会形成死循环。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。