当前位置:   article > 正文

Python爬虫案例解析:五个实用案例及代码示例(学习爬虫看这一篇文章就够了)_爬虫应用案例

爬虫应用案例

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

import requests
from bs4 import BeautifulSoup

url = 'http://example.com/movie-reviews'
response = requests.get(url)

soup = BeautifulSoup(response.content, 'html.parser')
reviews = soup.find_all('div', class_='review')

for review in reviews:
    title = review.find('h2').text
    content = review.find('p').text
    rating = review.find('span', class_='rating').text

    print('Title:', title)
    print('Content:', content)
    print('Rating:', rating)
    print('---')


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

代码解析: 这个案例展示了如何爬取电影网站上的电影评论,并提取关键信息。我们发送GET请求获取电影评论页面的HTML响应,然后使用BeautifulSoup库对HTML响应进行解析。通过find_all方法,我们找到class为’review’的div元素,这些元素包含了电影评论。针对每个电影评论,我们使用find方法找到标题、内容和评分,并将其打印出来。

案例四:爬取新闻文章并进行文本分析

import requests
from bs4 import BeautifulSoup
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist

url = 'http://example.com/news-articles'
response = requests.get(url)

soup = BeautifulSoup(response.content, 'html.parser')
articles = soup.find_all('article')

for article in articles:
    title = article.find('h2').text
    content = article.find('div', class_='content').text

    tokens = word_tokenize(content)
    frequency_distribution = FreqDist(tokens)
    top_words = frequency_distribution.most_common(10)

    print('Title:', title)
    print('Content:', content)
    print('Top Words:', top_words)
    print('---')


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

代码解析: 这个案例演示了如何爬取新闻网站的文章,并使用自然语言处理库进行文本分析。我们发送GET请求获取新闻文章页面的HTML响应,然后使用BeautifulSoup库对HTML响应进行解析。通过find_all方法,我们找到所有的article元素,这些元素包含了新闻文章。针对每篇文章,我们使用find方法找到标题和内容,并将其打印出来。我们使用nltk库中的word_tokenize函数对内容进行分词,并使用FreqDist类计算词频分布。最后,我们打印出词频最高的前10个单词。

案例五:爬取股票数据并进行分析

import requests
import pandas as pd

url = 'http://example.com/stock-data'
response = requests.get(url)

data = response.json()

df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])

# 计算股票收益率
df['Return'] = df['Close'].pct_change()

# 计算股票收益率的统计信息
return_stats = df['Return'].describe()

print('Stock Return Statistics:')
print(return_stats)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

代码解析: 这个案例展示了如何爬取股票数据,并使用pandas库进行数据分析。我们发送GET请求获取股票数据的JSON响应,然后将其转换为DataFrame对象。我们使用pd.to_datetime()函数将日期列转换为日期时间格式。然后,我们计算股票的收益率,通过计算每日收盘价的变化百分比。最后,我们使用describe()函数计算股票收益率的统计信息,并打印出来。

结论: 在本篇博客中,我们介绍了五个实用的Python爬虫案例,并提供了相应的代码示例和解析。这些案例涵盖了不同的应用场景,包括爬取天气数据、图片下载、电影评论、新闻文章爬取和文本分析,以及股票数据爬取和分析。通过这些案例的学习,读者可以更深入地理解Python爬虫的应用和技巧,为自己的爬虫项目提供更多思路和灵感。

通过运用Python爬虫,我们可以从网页中获取数据,并进行各种处理和分析。这些案例展示了Python爬虫在数据获取和处理方面的强大功能。读者可以根据自己的需求和兴趣,进一步扩展和优化这些案例,应用于自己的实际项目中。

希望本篇博客对读者理解和应用Python爬虫技术有所帮助,带来启发和实践的动力。祝愿读者在爬虫的世界中探索出更多精彩的可能性!

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,Python自动化测试学习等教程。带你从零基础系统性的学好Python!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/824770

推荐阅读
相关标签